Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37958519

RESUMEN

Altered hepatic mitochondrial fatty acid ß-oxidation and associated tricarboxylic acid (TCA) cycle activity contributes to lifestyle-related diseases, and circulating biomarkers reflecting these changes could have disease prognostic value. This study aimed to determine hepatic and systemic changes in TCA-cycle-related metabolites upon the selective pharmacologic enhancement of mitochondrial fatty acid ß-oxidation in the liver, and to elucidate the mechanisms and potential markers of hepatic mitochondrial activity. Male Wistar rats were treated with 3-thia fatty acids (e.g., tetradecylthioacetic acid (TTA)), which target mitochondrial biogenesis, mitochondrial fatty acid ß-oxidation, and ketogenesis predominantly in the liver. Hepatic and plasma concentrations of TCA cycle intermediates and anaplerotic substrates (LC-MS/MS), plasma ketones (colorimetric assay), and acylcarnitines (HPLC-MS/MS), along with associated TCA-cycle-related gene expression (qPCR) and enzyme activities, were determined. TTA-induced hepatic fatty acid ß-oxidation resulted in an increased ratio of plasma ketone bodies/nonesterified fatty acid (NEFA), lower plasma malonyl-CoA levels, and a higher ratio of plasma acetylcarnitine/palmitoylcarnitine (C2/C16). These changes were associated with decreased hepatic and increased plasma pyruvate concentrations, and increased plasma concentrations of succinate, malate, and 2-hydroxyglutarate. Expression of several genes encoding TCA cycle enzymes and the malate-oxoglutarate carrier (Slc25a11), glutamate dehydrogenase (Gdh), and malic enzyme (Mdh1 and Mdh2) were significantly increased. In conclusion, the induction of hepatic mitochondrial fatty acid ß-oxidation by 3-thia fatty acids lowered hepatic pyruvate while increasing plasma pyruvate, as well as succinate, malate, and 2-hydroxyglutarate.


Asunto(s)
Malatos , Ácido Pirúvico , Ratas , Animales , Masculino , Ratas Wistar , Malatos/metabolismo , Ácido Pirúvico/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Hígado/metabolismo , Ácidos Grasos/metabolismo , Oxidación-Reducción , Cuerpos Cetónicos/metabolismo , Succinatos/metabolismo
2.
Front Immunol ; 14: 1128986, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744329

RESUMEN

Background: Psoriasis is a chronic immune-mediated skin disease with systemic inflammation and comorbidities. Although the disease severity may vary over time, many patients suffer from mild to moderate disease. Often local treatment will be sufficient to control the symptoms, but they may have several side effects. ω-3 polyunsaturated fatty acids have shown promising results in clinical trials with mild-to-moderate psoriasis. Methods: We explored the impact of phospholipid bound docosahexaenoic acid and eicosapentaenoic acid in a 3:1 ratio on immune cells and cytokine networks in peripheral blood of patients with psoriasis. We investigated the inter-relation of plasma cytokine levels and disease severity in 58 patients, and explored the status of circulating immune cell activity in 18 patients with non-severe psoriasis before and during herring roe oil supplementation. Plasma concentration of 22 cytokines was measured by Luminex technology and circulating immune cells were analyzed by multicolor flow cytometry. Results: CCL2 levels decreased over time, and IFN-γR1 increased, possibly related to the action of ω-3 polyunsaturated fatty acids. We observed a shift from naïve to effector CD4+ T cells and decreases of CD38 expression on CD4+ and CD8+ T cells, CD56bright NK cells and CD14+CD16- classical monocytes. Conclusions: These findings support the beneficial effect of herring roe oil supplementation.


Asunto(s)
Ácidos Grasos Omega-3 , Psoriasis , Humanos , Animales , Linfocitos T CD8-positivos , Psoriasis/tratamiento farmacológico , Peces , Ácidos Grasos Omega-3/uso terapéutico , Citocinas
3.
Front Nutr ; 10: 1020678, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404855

RESUMEN

Background: Clinical studies on effects of marine-derived omega-3 (n-3) polyunsaturated fatty acids (PUFAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and the plant-derived omega-6 (n-6) PUFA linoleic acid (LA) on lipoprotein-lipid components and glucose-insulin homeostasis have shown conflicting results, which may partly be explained by differential responses in females and males. However, we have lacked data on sexual dimorphism in the response of cardiometabolic risk markers following increased consumption of n-3 or n-6 PUFAs. Objective: To explore sex-specific responses after n-3 (EPA + DHA) or n-6 (LA) PUFA supplementation on circulating lipoprotein subfractions, standard lipids, apolipoproteins, fatty acids in red blood cell membranes, and markers of glycemic control/insulin sensitivity among people with abdominal obesity. Methods: This was a randomized double-blind crossover study with two 7-week intervention periods separated by a 9-week washout phase. Females (n = 16) were supplemented with 3 g/d of EPA + DHA (fish oil) or 15 g/d of LA (safflower oil), while males (n = 23) received a dose of 4 g/d of EPA + DHA or 20 g/d of LA. In fasting blood samples, we measured lipoprotein particle subclasses, standard lipids, apolipoproteins, fatty acid profiles, and markers of glycemic control/insulin sensitivity. Results: The between-sex difference in relative change scores was significant after n-3 for total high-density lipoproteins (females/males: -11%*/-3.3%, p = 0.036; *: significant within-sex change), high-density lipoprotein particle size (+2.1%*/-0.1%, p = 0.045), and arachidonic acid (-8.3%*/-12%*, p = 0.012), and after n-6 for total (+37%*/+2.1%, p = 0.041) and small very-low-density lipoproteins (+97%*/+14%, p = 0.021), and lipoprotein (a) (-16%*/+0.1%, p = 0.028). Circulating markers of glucose-insulin homeostasis differed significantly after n-3 for glucose (females/males: -2.1%/+3.9%*, p = 0.029), insulin (-31%*/+16%, p < 0.001), insulin C-peptide (-12%*/+13%*, p = 0.001), homeostasis model assessment of insulin resistance index 2 (-12%*/+14%*, p = 0.001) and insulin sensitivity index 2 (+14%*/-12%*, p = 0.001), and quantitative insulin sensitivity check index (+4.9%*/-3.4%*, p < 0.001). Conclusion: We found sex-specific responses after high-dose n-3 (but not n-6) supplementation in circulating markers of glycemic control/insulin sensitivity, which improved in females but worsened in males. This may partly be related to the sex differences we observed in several components of the lipoprotein-lipid profile following the n-3 intervention. Clinical trial registration: https://clinicaltrials.gov/, identifier [NCT02647333].

4.
Nutrients ; 14(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36558523

RESUMEN

Rest raw materials provide a new source of bioactive dietary ingredients, and this study aimed to determine the health effects of diets with chicken protein hydrolysate (CPH) and chicken oil (CO) generated from deboned chicken meat. Male Wistar rats (n = 56) were divided into seven groups in three predefined sub-experiments to study the effects of protein source (casein, chicken fillet, pork fillet, and CPH), the dose-effect of CPH (50% and 100% CPH), and the effects of combining CPH and CO. Rats were fed high-fat diets for 12 weeks, and casein and chicken fillet were used as controls in all sub-experiments. While casein, chicken-, or pork fillet diets resulted in similar weight gain and plasma lipid levels, the CPH diet reduced plasma total cholesterol. This effect was dose dependent and accompanied with the reduced hepatic activities of acetyl-CoA carboxylase and fatty acid synthase. Further, rats fed combined CPH and CO showed lower weight gain, and higher hepatic mitochondrial fatty acid oxidation, plasma L-carnitine, short-chain acylcarnitines, TMAO, and acetylcarnitine/palmitoylcarnitine. Thus, in male Wistar rats, CPH and CO lowered plasma cholesterol and increased hepatic fatty acid oxidation compared to whole protein diets, pointing to potential health-beneficial bioactive properties of these processed chicken rest raw materials.


Asunto(s)
Pollos , Hidrolisados de Proteína , Ratas , Masculino , Animales , Ratas Wistar , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/metabolismo , Pollos/metabolismo , Caseínas/metabolismo , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Aumento de Peso , Colesterol , Ácidos Grasos/metabolismo , Tejido Adiposo/metabolismo , Grasas de la Dieta/metabolismo
5.
J Anim Physiol Anim Nutr (Berl) ; 106(6): 1396-1407, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35851693

RESUMEN

This study investigated the effect of 50% diet restriction and its coadministration with krill oil (KO) or fish oil (FO) on glucose tolerance and insulin sensitivity in a rabbit model of obesity. Castrated male rabbits were 50% restricted fed and supplemented with KO or FO (600 mg omega-3 polyunsaturated fatty acids/daily) for 2 months. Simultaneously, two control groups were used: castrated, full-diet-fed and castrated, 50% restricted fed rabbits without additives restricted group (RG). The energy-restricted diet decreased final body weight in castrated male rabbits and improved most insulin sensitivity and ß-cell function indexes. Combining the same diet and KO or FO, further reduced fasting blood glucose levels. However, this feed regime significantly accelerated insulin secretion and reduced gene expression of insulin receptor substrate-1, pyruvate kinase and 3-hydroxy-3-methylglutaryl-CoA synthase 2. This was manifested by reduced dynamic insulin sensitivity, assessment homoeostasis-ß-cell function indices and increased glucose elimination rate to levels comparable to or above the obese animals. Aspartate and alanine aminotransferases enzyme activities were raised more than those in the obese group. Surprisingly, KO and FO administration downregulated acetyl-coenzyme A oxidase and carnitine palmitoyltransferase 2 messenger RNA gene expression compared to the RG. In conclusion, we can assume that a better effect on insulin sensitivity and glucose tolerance was observed in the diet restriction alone than in the coadministration of KO or FO when animals are exposed to highly obesity predisposing factors. These effects could be at least in part ascribed to the modified gene expression levels of some critical enzymes and factors involved in liver glucose metabolism and ß-oxidation.


Asunto(s)
Euphausiacea , Resistencia a la Insulina , Conejos , Masculino , Animales , Aceites de Pescado/farmacología , Obesidad/metabolismo , Obesidad/veterinaria , Insulina , Hígado/metabolismo , Castración/veterinaria , Dieta , Glucosa/metabolismo
6.
J Nutr ; 151(9): 2610-2621, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34132338

RESUMEN

BACKGROUND: Low-carbohydrate diets are suggested to exert metabolic benefits by reducing circulating triacylglycerol (TG) concentrations, possibly by enhancing mitochondrial activity. OBJECTIVE: We aimed to elucidate mechanisms by which dietary carbohydrate and fat differentially affect hepatic and circulating TG, and how these mechanisms relate to fatty acid composition. METHODS: Six-week-old, ∼300 g male Wistar rats were fed a high-carbohydrate, low-fat [HC; 61.3% of energy (E%) carbohydrate] or a low-carbohydrate, high-fat (HF; 63.5 E% fat) diet for 4 wk. Parameters of lipid metabolism and mitochondrial function were measured in plasma and liver, with fatty acid composition (GC), high-energy phosphates (HPLC), carnitine metabolites (HPLC-MS/MS), and hepatic gene expression (qPCR) as main outcomes. RESULTS: In HC-fed rats, plasma TG was double and hepatic TG 27% of that in HF-fed rats. The proportion of oleic acid (18:1n-9) was 60% higher after HF vs. HC feeding while the proportion of palmitoleic acid (16:1n-7) and vaccenic acid (18:1n-7), and estimated activities of stearoyl-CoA desaturase, SCD-16 (16:1n-7/16:0), and de novo lipogenesis (16:0/18:2n-6) were 1.5-7.5-fold in HC vs. HF-fed rats. Accordingly, hepatic expression of fatty acid synthase (Fasn) and acetyl-CoA carboxylase (Acaca/Acc) was strongly upregulated after HC feeding, accompanied with 8-fold higher FAS activity and doubled ACC activity. There were no differences in expression of liver-specific biomarkers of mitochondrial biogenesis and activity (Cytc, Tfam, Cpt1, Cpt2, Ucp2, Hmgcs2); concentrations of ATP, AMP, and energy charge; plasma carnitine/acylcarnitine metabolites; or peroxisomal fatty acid oxidation. CONCLUSIONS: In male Wistar rats, dietary carbohydrate was converted into specific fatty acids via hepatic lipogenesis, contributing to higher plasma TG and total fatty acids compared with high-fat feeding. In contrast, the high-fat, low-carbohydrate feeding increased hepatic fatty acid content, without affecting hepatic mitochondrial fatty acid oxidation.


Asunto(s)
Dieta Alta en Grasa , Lipidómica , Animales , Carbohidratos de la Dieta/metabolismo , Metabolismo Energético , Ácidos Grasos/metabolismo , Lipogénesis , Hígado/metabolismo , Masculino , Ratas , Ratas Wistar , Espectrometría de Masas en Tándem , Triglicéridos/metabolismo
7.
Clin Nutr ; 40(5): 2556-2575, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33933722

RESUMEN

BACKGROUND & AIMS: Marine-derived omega-3 (n-3) polyunsaturated fatty acids (PUFAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), lower circulating levels of triacylglycerols (TAGs), and the plant-derived omega-6 (n-6) PUFA linoleic acid (LA) may reduce cholesterol levels. Clinical studies on effects of these dietary or supplemental PUFAs on other blood fat fractions are few and have shown conflicting results. This study aimed to determine effects of high-dose supplemental n-3 (EPA + DHA) and n-6 (LA) PUFAs from high-quality oils on circulating lipoprotein subfractions and standard lipids (primary outcomes), as well as apolipoproteins, fatty acids, and glycemic control (secondary outcomes), in females and males with abdominal obesity. METHODS: This was a randomized double-blind crossover study with two 7-wk intervention periods separated by a 9-wk washout phase. Females (n = 16) were supplemented with 3 g/d of EPA + DHA (TAG fish oil) or 15 g/d of LA (safflower oil), while males (n = 23) received a dose of 4 g/d of EPA + DHA or 20 g/d of LA. In fasting blood samples, we investigated lipoprotein particle subclasses by nuclear magnetic resonance spectroscopy, as well as standard lipids, apolipoproteins, fatty acid profiles, and glucose and insulin. Data were analyzed by linear mixed-effects modeling with 'subjects' as the random factor. RESULTS: The difference between interventions in relative change scores was among the lipoprotein subfractions significant for total very-low-density lipoproteins (VLDLs) (n-3 vs. n-6: -38%∗ vs. +16%, p < 0.001; ∗: significant within-treatment change score), large VLDLs (-58%∗ vs. -0.91%, p < 0.001), small VLDLs (-57%∗ vs. +41%∗, p < 0.001), total low-density lipoproteins (LDLs) (+5.8%∗ vs. -4.3%∗, p = 0.002), large LDLs (+23%∗ vs. -2.1%, p = 0.004), total high-density lipoproteins (HDLs) (-6.0%∗ vs. +3.7%, p < 0.001), large HDLs (+11%∗ vs. -5.3%, p = 0.001), medium HDLs (-24%∗ vs. +6.2%, p = 0.030), and small HDLs (-9.9%∗ vs. +9.6%∗, p = 0.002), and among standard lipids for TAGs (-16%∗ vs. -2.6%, p = 0.014), non-esterified fatty acids (-19%∗ vs. +5.5%, p = 0.033), and total cholesterol (-0.28% vs. -4.4%∗, p = 0.042). A differential response in relative change scores was also found for apolipoprotein (apo)B (+0.40% vs. -6.0%∗, p = 0.008), apoA-II (-6.0%∗ vs. +1.5%, p = 0.001), apoC-II (-11%∗ vs. -1.7%, p = 0.025), and apoE (+3.3% vs. -3.8%, p = 0.028). CONCLUSIONS: High-dose supplementation of high-quality oils with n-3 (EPA + DHA) or n-6 (LA) PUFAs was followed by reductions in primarily TAG- or cholesterol-related markers, respectively. The responses after both interventions point to changes in the lipoprotein-lipid-apolipoprotein profile that have been associated with reduced cardiometabolic risk, also among people with TAG or LDL-C levels within the normal range. REGISTRATION: Registered under ClinicalTrials.gov Identifier: NCT02647333. CLINICAL TRIAL REGISTRATION: Registered at https://clinicaltrials.gov/ct2/show/NCT02647333.


Asunto(s)
Apolipoproteínas/sangre , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-6/administración & dosificación , Lípidos/sangre , Lipoproteínas/clasificación , Biomarcadores/sangre , Estudios Cruzados , Suplementos Dietéticos , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Obesidad Abdominal
8.
Sci Rep ; 11(1): 5332, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674638

RESUMEN

Rheumatoid arthritis (RA) and periodontitis are chronic inflammatory diseases with several pathogenic pathways in common. Evidence supports an association between the diseases, but the exact underlying mechanisms behind the connection are still under investigation. Lipid, fatty acid (FA) and metabolic profile alterations have been associated with several chronic inflammatory diseases, including RA and periodontitis. Mitochondria have a central role in regulating cellular bioenergetic and whole-body metabolic homeostasis, and mitochondrial dysfunction has been proposed as a possible link between the two disorders. The aim of this cross-sectional study was to explore whole-blood FA, serum lipid composition, and carnitine- and choline derivatives in 78 RA outpatients with different degrees of periodontal inflammation. The main findings were alterations in lipid, FA, and carnitine- and choline derivative profiles. More specifically, higher total FA and total cholesterol concentrations were found in active RA. Elevated phospholipid concentrations with concomitant lower choline, elevated medium-chain acylcarnitines (MC-AC), and decreased ratios of MC-AC and long-chain (LC)-AC were associated with prednisolone medication. This may indicate an altered mitochondrial function in relation to the increased inflammatory status in RA disease. Our findings may support the need for interdisciplinary collaboration within the field of medicine and dentistry in patient stratification to improve personalized treatment. Longitudinal studies should be conducted to further assess the potential impact of mitochondrial dysfunction on RA and periodontitis.


Asunto(s)
Artritis Reumatoide/metabolismo , Carnitina/metabolismo , Colina/metabolismo , Ácidos Grasos/sangre , Inflamación/metabolismo , Anciano , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pacientes Ambulatorios
9.
Artículo en Inglés | MEDLINE | ID: mdl-33454435

RESUMEN

OBJECTIVE: Discovery of specific markers that reflect altered hepatic fatty acid oxidation could help to detect an individual's risk of fatty liver, type 2 diabetes and cardiovascular disease at an early stage. Lipid and protein metabolism are intimately linked, but our understanding of this crosstalk remains limited. METHODS: In male Wistar rats, we used synthetic fatty acid analogues (3-thia fatty acids) as a tool to induce hepatic fatty acid oxidation and mitochondrial biogenesis, to gain new insight into the link between fatty acid oxidation, amino acid metabolism and TCA cycle-related intermediate metabolites in liver and plasma. RESULTS: Rats treated with 3-thia fatty acids had 3-fold higher hepatic, but not adipose and skeletal muscle, expression of the thioesterase 3-hydroxyisobutyryl-CoA hydrolase (Hibch), which controls the formation of 3-hydroxyisobutyrate (3-HIB) in the valine degradation pathway. Consequently, 3-thia fatty acid-stimulated hepatic fatty acid oxidation and ketogenesis was accompanied by decreased plasma 3-HIB and increased methylmalonic acid (MMA) concentrations further downstream in BCAA catabolism. The higher plasma MMA corresponded to higher MMA-CoA hydrolase activity and hepatic expression of GTP-specific succinyl-CoA synthase (Suclg2) and succinate dehydrogenase (Sdhb), and lower MMA-CoA mutase activity. Plasma 3-HIB correlated positively to plasma and hepatic concentrations of TAG, plasma total fatty acids, plasma NEFA and insulin/glucose ratio, while the reverse correlations were seen for MMA. CONCLUSION: Our study provides new insight into TCA cycle-related metabolic changes associated with altered hepatic fatty acid flux, and identifies 3-HIB and MMA as novel circulating markers reflective of mitochondrial ß-oxidation in male Wistar rats.


Asunto(s)
Ácidos Grasos/metabolismo , Hidroxibutiratos/sangre , Ácido Metilmalónico/sangre , Mitocondrias Hepáticas/metabolismo , Animales , Hidroxibutiratos/metabolismo , Resistencia a la Insulina , Masculino , Ácido Metilmalónico/metabolismo , Oxidación-Reducción , Ratas Wistar
10.
Food Sci Nutr ; 8(7): 3052-3060, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32724569

RESUMEN

Chicken protein hydrolysates (CPHs) generated from rest raw materials through enzymatic hydrolysis using Corolase PP or Alcalase were shown to reduce inflammation and stimulate hepatic mitochondrial fatty acid oxidation in high-fat-fed mice. This study investigates the effect of CPH diets in atherosclerosis-prone apolipoprotein E-deficient (Apoe-/-) mice. Apoe-/- mice were divided into three groups of 12 animals and fed high-fat diets with casein (control), Alcalase CPH, or Corolase PP CPH. After 12 weeks, mice were sacrificed, blood samples were collected, and aorta was dissected for subsequent én face analysis. Mice fed Corolase PP CPH but not Alcalase CPH had significantly lower % atherosclerotic plaque area in the aortic arch compared to controls (p = .015 and p = .077, respectively). Plasma and liver cholesterol and triacylglycerol remained constant, but levels of the fatty acid C20:5n-3 were increased, accompanied by an elevated delta-5 desaturase index in both CPHs groups. Moreover, a significant reduction of plasma MCP-1 was detected in Corolase PP CPH compared to control. Overall, our data show that protein hydrolysates from chicken reduced atherosclerosis and attenuated systemic risk factors related to atherosclerotic disorders, not related to changes in the level of plasma cholesterol.

11.
Acta Derm Venereol ; 100(10): adv00154, 2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32378724

RESUMEN

The effect of omega-3 polyunsaturated fatty acid supplements in patients with psoriasis vulgaris has previously been investigated, but interventions varied in source, composition, dose, administration route and duration of treatment. The observed beneficial effects in patients with psoriasis vulgaris using herring roe oil as a dietary supplement prompted this investigation. This randomised, double-blind and placebo-controlled study was designed and performed to explore the efficacy and safety of herring roe oil supplementation in 64 patients with plaque psoriasis (ClinicalTrials.gov: NCT03359577). The primary end-point was comparing the change in mean Psoriasis Area Severity Index (PASI) scores in the herring roe oil treatment group and the placebo group from baseline to week 26. In the intention-to-treat population, a statistically significant improvement in the mean PASI score was observed with herring roe oil compared to placebo at 26 weeks. In the recruited patient group, the measured improvement was greatest in patients with a PASI score from 5.5-9.9 at baseline.


Asunto(s)
Suplementos Dietéticos , Aceites de Pescado/administración & dosificación , Psoriasis/tratamiento farmacológico , Piel/efectos de los fármacos , Administración Oral , Adulto , Anciano , Cápsulas , Suplementos Dietéticos/efectos adversos , Método Doble Ciego , Femenino , Aceites de Pescado/efectos adversos , Humanos , Masculino , Persona de Mediana Edad , Noruega , Psoriasis/diagnóstico , Índice de Severidad de la Enfermedad , Piel/patología , Factores de Tiempo , Resultado del Tratamiento
12.
Lipids Health Dis ; 19(1): 94, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32410680

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease is often associated with obesity, insulin resistance, dyslipidemia, and the metabolic syndrome in addition to mitochondrial dysfunction and nicotinamide adenine dinucleotide (NAD+) deficiency. The aim of this study was to investigate how inhibition of mitochondrial fatty acid oxidation using the compound tetradecylthiopropionic acid (TTP) would affect hepatic triacylglycerol level and plasma levels of kynurenine (Kyn) metabolites and nicotinamide. METHODS: 12 C57BL/6 mice were fed a control diet, or an intervention diet supplemented with 0.9% (w/w) tetradecylthiopropionic acid for 14 days. Blood and liver samples were collected, enzyme activities and gene expression were analyzed in liver, in addition to fatty acid composition. Metabolites in the tryptophan/kynurenine pathway and total antioxidant status were measured in plasma. RESULTS: Dietary treatment with tetradecylthiopropionic acid for 2 weeks induced fatty liver accompanied by decreased mitochondrial fatty acid oxidation. The liver content of the oxidized form of NAD+ was increased, as well as the ratio of NAD+/NADH, and these changes were associated by increased hepatic mRNA levels of NAD synthetase and nicotinamide mononucleotide adenyltransferase-3. The downstream metabolites of kynurenine were reduced in plasma whereas the plasma nicotinamide content was increased. Some effects on inflammation and oxidative stress was observed in the liver, while the plasma antioxidant capacity was increased. This was accompanied by a reduced plasma ratio of kynurenine/tryptophan. In addition, a significant decrease in the inflammation-related arachidonic fatty acid in liver was observed. CONCLUSION: Fatty liver induced by short-time treatment with tetradecylthiopropionic acid decreased the levels of kynurenine metabolites but increased the plasma levels of NAD+ and nicotinamide. These changes are most likely not associated with increased inflammation and oxidative stress. Most probably the increase of NAD+ and nicotinamide are generated through the Preiss Handler pathway and/or salvage pathway and not through the de novo pathway. The take home message is that non-alcoholic fatty liver disease is associated with the metabolic syndrome in addition to mitochondrial dysfunction and nicotinamide adenine dinucleotide (NAD+) deficiency. Inducing fatty liver in mice by inhibition of fatty acid oxidation resulted in a concomitant change in kynurenine metabolites increasing the plasma levels of nicotinamides and the hepatic NAD+/NADH ratio, probably without affecting the de novo pathway of kynurenines.


Asunto(s)
Quinurenina/metabolismo , Hígado/metabolismo , NAD/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Triglicéridos/análisis , Animales , Ácido Araquidónico/análisis , Modelos Animales de Enfermedad , Inflamación , Quinurenina/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Estrés Oxidativo , Propionatos/toxicidad , Sulfuros/toxicidad , Triptófano/sangre , Triptófano/metabolismo
13.
PLoS One ; 15(3): e0229322, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32176696

RESUMEN

Tetradecylthioacetic acid (TTA) is a synthetic fatty acid with a sulfur substitution in the ß-position. This modification renders TTA unable to undergo complete ß-oxidation and increases its biological activity, including activation of peroxisome proliferator activated receptors (PPARs) with preference for PPARα. This study investigated the effects of TTA on lipid and lipoprotein metabolism in the intestine and liver of mice fed a high fat diet (HFD). Mice receiving HFD supplemented with 0.75% (w/w) TTA had significantly lower body weights compared to mice fed the diet without TTA. Plasma triacylglycerol (TAG) was reduced 3-fold with TTA treatment, concurrent with increase in liver TAG. Total cholesterol was unchanged in plasma and liver. However, TTA promoted a shift in the plasma lipoprotein fractions with an increase in larger HDL particles. Histological analysis of the small intestine revealed a reduced size of lipid droplets in enterocytes of TTA treated mice, accompanied by increased mRNA expression of fatty acid transporter genes. Expression of the cholesterol efflux pump Abca1 was induced in the small intestine, but not in the liver. Scd1 displayed markedly increased mRNA and protein expression in the intestine of the TTA group. It is concluded that TTA treatment of HFD fed mice leads to increased expression of genes involved in uptake and transport of fatty acids and HDL cholesterol in the small intestine with concomitant changes in the plasma profile of smaller lipoproteins.


Asunto(s)
HDL-Colesterol/sangre , Dieta Alta en Grasa/efectos adversos , Lipoproteínas/metabolismo , PPAR alfa/agonistas , Sulfuros/administración & dosificación , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Sulfuros/farmacología , Triglicéridos/sangre
14.
Artículo en Inglés | MEDLINE | ID: mdl-31676443

RESUMEN

Dysregulation of the tryptophan (Trp)-NAD+ pathway has been related to several pathological conditions, and the metabolites in this pathway are known to influence mitochondrial respiration and redox status. The aim of this project was to investigate if stimulation of beta-oxidation and mitochondrial proliferation by the mitochondrial-targeted compound 2-(tridec-12-yn-1-ylthio)acetic acid (1-triple TTA) would influence metabolites of the Trp-Kyn-NAD+ pathway. We wished to investigate how carnitine depletion by meldonium-treatment influenced these metabolites. After dietary treatment of male Wistar rats with 1-triple TTA for three weeks, increased hepatic mitochondrial- and peroxisomal fatty acid oxidation resulted. The plasma content of total carnitines decreased compared to control animals, whereas hepatic genes involved in CoA biosynthesis were upregulated by 1-triple TTA treatment. The plasma Trp level and individual metabolites in the kynurenine pathway were increased by 1-triple TTA, associated with decreased hepatic gene expression of indoleamine2,3-dioxygenase. 1-triple TTA treatment increased conversion of Trp to nicotinamide (Nam) as the plasma content of quinolinic acid, Nam and N1-methylnicotinamide (mNam) increased, accompanied with suppression of hepatic gene expression of α-amino-α-carboxymuconate-ε-semialdehyde decarboxylase. A positive correlation between mitochondrial fatty acid oxidation and Trp-derivatives was found. Almost identical results were obtained by 1-triple TTA in the presence of meldonium, which alone exerted minor effects. Moreover, the plasma Kyn:Trp ratio (KTR) correlated negatively to mitochondrial function. Whether increased flux through the Trp-NAD+ pathway increased redox status and lowered inflammation locally and systemically should be considered.


Asunto(s)
Quinurenina/metabolismo , Hígado/metabolismo , Mitocondrias/metabolismo , Niacinamida/metabolismo , Triptófano/metabolismo , Animales , Carnitina/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Quinurenina/sangre , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/citología , Hígado/efectos de los fármacos , Masculino , Redes y Vías Metabólicas/efectos de los fármacos , Metilhidrazinas/farmacología , Mitocondrias/efectos de los fármacos , NAD/metabolismo , Niacinamida/sangre , Oxidación-Reducción/efectos de los fármacos , Peroxisomas/efectos de los fármacos , Peroxisomas/metabolismo , Ratas , Triptófano/sangre
15.
PLoS One ; 14(12): e0226069, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31805132

RESUMEN

INTRODUCTION: Peroxisome proliferator-activated receptors (PPARs) have been suggested to be involved in the regulation of one-carbon metabolism. Previously we have reported effects on plasma concentrations of metabolites along these pathways as well as markers of B-vitamin status in rats following treatment with a pan-PPAR agonist. Here we aimed to investigate the effect on these metabolites after specific activation of the PPARα and PPARγ subtypes. METHODS: For a period of 12 days, Male Wistar rats (n = 20) were randomly allocated to receive treatment with the PPARα agonist WY-14.643 (n = 6), the PPARγ agonist rosiglitazone (n = 6) or placebo (n = 8). The animals were sacrificed under fasting conditions, and plasma concentration of metabolites were determined. Group differences were assessed by one-way ANOVA, and planned comparisons were performed for both active treatment groups towards the control group. RESULTS: Treatment with a PPARα agonist was associated with increased plasma concentrations of most biomarkers, with the most pronounced differences observed for betaine, dimethylglycine, glycine, nicotinamide, methylnicotinamide, pyridoxal and methylmalonic acid. Lower levels were observed for flavin mononucleotide. Fewer associations were observed after treatment with a PPARγ agonist, and the most notable was increased plasma serine. CONCLUSION: Treatment with a PPARα agonist influenced plasma concentration of one-carbon metabolites and markers of B-vitamin status. This confirms previous findings, suggesting specific involvement of PPARα in the regulation of these metabolic pathways as well as the status of closely related B-vitamins.


Asunto(s)
Carbono/metabolismo , PPAR alfa/agonistas , Pirimidinas/farmacología , Complejo Vitamínico B/sangre , Animales , Masculino , PPAR gamma/agonistas , Ratas , Ratas Wistar , Rosiglitazona/farmacología , Factores de Tiempo
16.
Clin Endocrinol (Oxf) ; 91(6): 810-815, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31556132

RESUMEN

OBJECTIVES: Polycystic ovary syndrome (PCOS) is associated with an increased cardiometabolic risk that might not necessarily translate into adverse cardiovascular outcome later in life. Recently, alterations in gut microbial composition have been reported in the syndrome. Microbiota-dependent metabolite trimethylamine N-oxide (TMAO) and its precursors are closely linked with development of atherosclerotic cardiovascular disease, independently of traditional risk factors. We aimed to assess whether TMAO and its precursors are altered in PCOS and to determine potential impact of treatment on these metabolites. DESIGN: Prospective study. PATIENTS: Twenty-seven overweight/obese patients with PCOS and 25 age- and BMI-matched healthy control women. MEASUREMENTS: At baseline, fasting serum TMAO and its precursors were measured after a 3-day standardized diet. Patients received 3-month OC therapy along with general dietary advice after which all measurements were repeated. RESULTS: Patients had higher total testosterone (T) and free androgen index (FAI) whereas whole-body fat mass, fasting plasma glucose, insulin and lipids were similar between the groups. PCOS group showed significantly higher serum levels of TMAO and its precursors; choline, betaine and carnitine. TMAO and choline showed correlations with T. After 3 months of OC use, TMAO and its precursors significantly decreased along with reductions in BMI, T and FAI. CONCLUSIONS: This study reports for the first time that TMAO and its precursors are elevated in PCOS which might contribute to increased cardiometabolic risk of the syndrome and that short-term OC use along with lifestyle intervention is associated with reduction of these microbiome-dependent metabolites.


Asunto(s)
Enfermedades Cardiovasculares/sangre , Microbioma Gastrointestinal/fisiología , Metilaminas/sangre , Síndrome del Ovario Poliquístico/sangre , Adolescente , Adulto , Betaína/análogos & derivados , Betaína/sangre , Glucemia/metabolismo , Carnitina/sangre , Colina/sangre , Femenino , Humanos , Obesidad/sangre , Estudios Prospectivos , Factores de Riesgo , Testosterona/sangre , Adulto Joven
17.
PLoS One ; 14(9): e0222558, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31550253

RESUMEN

A fatty acid analogue, 2-(tridec-12-yn-1-ylthio)acetic acid (1-triple TTA), was previously shown to have hypolipidemic effects in rats by targeting mitochondrial activity predominantly in liver. This study aimed to determine if 1-triple TTA could influence carbohydrate metabolism. Male Wistar rats were treated for three weeks with oral supplementation of 100 mg/kg body weight 1-triple TTA. Blood glucose and insulin levels, and liver carbohydrate metabolism gene expression and enzyme activities were determined. In addition, human myotubes and Huh7 liver cells were treated with 1-triple TTA, and glucose and fatty acid oxidation were determined. The level of plasma insulin was significantly reduced in 1-triple TTA-treated rats, resulting in a 32% reduction in the insulin/glucose ratio. The hepatic glucose and glycogen levels were lowered by 22% and 49%, respectively, compared to control. This was accompanied by lower hepatic gene expression of phosphenolpyruvate carboxykinase, the rate-limiting enzyme in gluconeogenesis, and Hnf4A, a regulator of gluconeogenesis. Gene expression of pyruvate kinase, catalysing the final step of glycolysis, was also reduced by 1-triple TTA. In addition, pyruvate dehydrogenase activity was reduced, accompanied by 10-15-fold increased gene expression of its regulator pyruvate dehydrogenase kinase 4 compared to control, suggesting reduced entry of pyruvate into the TCA cycle. Indeed, the NADPH-generating enzyme malic enzyme 1 (ME1) catalysing production of pyruvate from malate, was increased 13-fold at the gene expression level. Despite the decreased glycogen level, genes involved in glycogen synthesis were not affected in livers of 1-triple TTA treated rats. In contrast, the pentose phosphate pathway seemed to be increased as the hepatic gene expression of glucose-6-phosphate dehydrogenase (G6PD) was higher in 1-triple TTA treated rats compared to controls. In human Huh7 liver cells, but not in myotubes, 1-triple-TTA reduced glucose oxidation and induced fatty acid oxidation, in line with previous observations of increased hepatic mitochondrial palmitoyl-CoA oxidation in rats. Importantly, this work recognizes the liver as an important organ in glucose homeostasis. The mitochondrially targeted fatty acid analogue 1-triple TTA seemed to lower hepatic glucose and glycogen levels by inhibition of gluconeogenesis. This was also linked to a reduction in glucose oxidation accompanied by reduced PHD activity and stimulation of ME1 and G6PD, favouring a shift from glucose- to fatty acid oxidation. The reduced plasma insulin/glucose ratio indicate that 1-triple TTA may improve glucose tolerance in rats.


Asunto(s)
Acetatos/farmacología , Glucemia/análisis , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Insulina/sangre , Hígado/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Animales , Línea Celular , Fructosafosfatos/metabolismo , Humanos , Hígado/metabolismo , Glucógeno Hepático/metabolismo , Masculino , Redes y Vías Metabólicas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , NADP/metabolismo , Palmitoil Coenzima A/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Ratas , Ratas Wistar
18.
PPAR Res ; 2019: 8047627, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31308847

RESUMEN

Dietary fatty acids (FAs) affect certain metabolic routes, including pathways controlled by the peroxisome proliferator-activated receptors (PPARs), but tissue-specific effects are not well-defined. Thus, the aim was to compare the metabolic response in hepatic, adipose, and cardiac tissues after treatment with specific PPAR agonists. Male Wistar rats were randomized into three groups: a control group receiving placebo (n=8); a PPARα agonist group receiving WY-14,643 (n=6); and a PPARγ agonist group receiving rosiglitazone (n=6) for 12 days. All animals received a low-fat standard chow diet and were given a daily dose of placebo or agonist orally. Lipids and FA methyl esters were measured in plasma, liver, and heart and gene expression was measured in liver and adipose tissue, while enzyme activities were measured in liver. Treatment with the PPARα agonist was associated with higher liver mass relative to body weight (liver index), lower plasma, and hepatic total cholesterol, as well as lower plasma carnitine and acylcarnitines, compared with control. In heart, PPARα activation leads to overall lower levels of free FAs and specific changes in certain FAs, compared with control. Furthermore, ß-oxidation in liver and the enzymatic activities of well-known PPARα targeted genes were higher following PPARα administration. Overall, rats treated with the PPARα agonist had higher hepatic saturated FAs (SFAs) and monounsaturated FAs (MUFAs) and lower n-6 and n-3 PUFAs, compared to control. Treatment with the PPARγ agonist was associated with a lower liver index, lower plasma triglycerides (TAG) and phospholipids, and higher hepatic phospholipids, compared with control. PPARγ target genes were increased specifically in adipose tissue. Moreover, lower total cardiac FAs and SFA and higher cardiac n-6 PUFA were also associated with PPARγ activation. Altogether, there were characteristic effects of PPARα activation in liver and heart, as well as in plasma. PPARγ effects were not only confined to adipose tissue, but specific effects were also seen in liver, heart, and plasma. In conclusion, short-term treatment with PPAR agonists induced tissue-specific effects on FA composition in liver and heart. Moreover, both PPARα and PPARγ activation lowered plasma TAG and phospholipids, most likely through effects on liver and adipose tissue, respectively. In future studies we aim to reveal whether similar patterns can be found through diet-induced activation of specific pathways.

19.
Mitochondrion ; 49: 97-110, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31351920

RESUMEN

Fatty acid oxidation is a central fueling pathway for mitochondrial ATP production. Regulation occurs through multiple nutrient- and energy-sensitive molecular mechanisms. We explored if upregulated mRNA expression of the mitochondrial enzyme pyruvate dehydrogenase kinase 4 (PDK4) may be used as a surrogate marker of increased mitochondrial fatty acid oxidation, by indicating an overall shift from glucose to fatty acids as the preferred oxidation fuel. The association between fatty acid oxidation and PDK4 expression was studied in different contexts of metabolic adaption. In rats treated with the modified fatty acid tetradecylthioacetic acid (TTA), Pdk4 was upregulated simultaneously with fatty acid oxidation genes in liver and heart, whereas muscle and white adipose tissue remained unaffected. In MDA-MB-231 cells, fatty acid oxidation increased nearly three-fold upon peroxisome proliferator-activated receptor α (PPARα, PPARA) overexpression, and four-fold upon TTA-treatment. PDK4 expression was highly increased under these conditions. Further, overexpression of PDK4 caused increased fatty acid oxidation in these cells. Pharmacological activators of PPARα and AMPK had minor effects, while the mTOR inhibitor rapamycin potentiated the effect of TTA. There were minor changes in mitochondrial respiration, glycolytic function, and mitochondrial biogenesis under conditions of increased fatty acid oxidation. TTA was found to act as a mild uncoupler, which is likely to contribute to the metabolic effects. Repeated experiments with HeLa cells supported these findings. In summary, PDK4 upregulation implies an overarching metabolic shift towards increased utilization of fatty acids as energy fuel, and thus constitutes a sensitive marker of enhanced fatty acid oxidation.


Asunto(s)
Ácidos Grasos/metabolismo , Regulación Enzimológica de la Expresión Génica , Proteínas Mitocondriales/biosíntesis , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/biosíntesis , Regulación hacia Arriba , Animales , Biomarcadores/metabolismo , Células HeLa , Humanos , Masculino , Especificidad de Órganos/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Ratas , Ratas Wistar , Sulfuros/toxicidad
20.
J Anim Physiol Anim Nutr (Berl) ; 103(3): 925-934, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30816602

RESUMEN

Adipose-derived stem cells (ADSCs) possess multipotent properties, and their proper functionality is essential for further development of metabolic disorders. In the current study, we explored the impact of two n-3 LC-PUFAs (long-chain polyunsaturated fatty acids, DHA-docosahexaenoic; C22:6, and EPA-eicosapentaenoic; C20:5) on a specific profile of lipolytic-related gene expressions in the in vitro-differentiated subcutaneous and visceral ADSCs from rabbits. The subcutaneous and visceral ADSCs were obtained from 28-day-old New Zealand rabbits. The primary cells were cultured up to passage 4 and were induced for adipogenic differentiation. Thereafter, the differentiated cells were treated with 100 µg EPA or DHA for 48 hr. The total mRNA was isolated and target genes expression evaluated by real-time RCR. The results demonstrated that treatment of rabbit ADSCs with n-3 PUFAs significantly enhanced mRNA expression of Perilipin A, while the upregulation of leptin and Rab18 genes was seen mainly in ADSCs from visceral adipose tissue. Moreover, the EPA significantly enhanced PEDF (Pigment Derived Epithelium Factor) mRNA expression only in visceral cells. Collectively, the results suggest activation of an additional lipolysis pathway most evident in visceral cells. The data obtained in our study indicate that in vitro EPA up-regulates the mRNA expression of the studied lipolysis-associated genes stronger than DHA mainly in visceral rabbit ADSCs.


Asunto(s)
Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Conejos/metabolismo , Transcriptoma/efectos de los fármacos , Animales , Células Cultivadas , Células Madre Mesenquimatosas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...