Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37539863

RESUMEN

In vertebrates with elongated auditory organs, mechanosensory hair cells (HCs) are organised such that complex sounds are broken down into their component frequencies along a proximal-to-distal long (tonotopic) axis. Acquisition of unique morphologies at the appropriate position along the chick cochlea, the basilar papilla, requires that nascent HCs determine their tonotopic positions during development. The complex signalling within the auditory organ between a developing HC and its local niche along the cochlea is poorly understood. Using a combination of live imaging and NAD(P)H fluorescence lifetime imaging microscopy, we reveal that there is a gradient in the cellular balance between glycolysis and the pentose phosphate pathway in developing HCs along the tonotopic axis. Perturbing this balance by inhibiting different branches of cytosolic glucose catabolism disrupts developmental morphogen signalling and abolishes the normal tonotopic gradient in HC morphology. These findings highlight a causal link between graded morphogen signalling and metabolic reprogramming in specifying the tonotopic identity of developing HCs.


Asunto(s)
Pollos , Cóclea , Animales , Cóclea/fisiología , Órgano Espiral , Células Ciliadas Auditivas/fisiología , Glucosa/metabolismo
2.
Redox Biol ; 62: 102672, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36940606

RESUMEN

The transcription factor Nrf2 and its repressor Keap1 mediate cell stress adaptation by inducing expression of genes regulating cellular detoxification, antioxidant defence and energy metabolism. Energy production and antioxidant defence employ NADH and NADPH respectively as essential metabolic cofactors; both are generated in distinct pathways of glucose metabolism, and both pathways are enhanced by Nrf2 activation. Here, we examined the role of Nrf2 on glucose distribution and the interrelation between NADH production in energy metabolism and NADPH homeostasis using glio-neuronal cultures isolated from wild-type, Nrf2-knockout and Keap1-knockdown mice. Employing advanced microscopy imaging of single live cells, including multiphoton fluorescence lifetime imaging microscopy (FLIM) to discriminate between NADH and NADPH, we found that Nrf2 activation increases glucose uptake into neurons and astrocytes. Glucose consumption is prioritized in brain cells for mitochondrial NADH and energy production, with a smaller contribution to NADPH synthesis in the pentose phosphate pathway for redox reactions. As Nrf2 is suppressed during neuronal development, this strategy leaves neurons reliant on astrocytic Nrf2 to maintain redox balance and energy homeostasis.


Asunto(s)
Antioxidantes , Factor 2 Relacionado con NF-E2 , Animales , Ratones , Astrocitos/metabolismo , Glucosa/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , NAD/metabolismo , NADP/metabolismo , Neuronas/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo
3.
Biophys J ; 122(7): 1240-1253, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36793214

RESUMEN

NADH and NADPH play key roles in the regulation of metabolism. Their endogenous fluorescence is sensitive to enzyme binding, allowing changes in cellular metabolic state to be determined using fluorescence lifetime imaging microscopy (FLIM). However, to fully uncover the underlying biochemistry, the relationships between their fluorescence and binding dynamics require greater understanding. Here we accomplish this through time- and polarization-resolved fluorescence and polarized two-photon absorption measurements. Two lifetimes result from binding of both NADH to lactate dehydrogenase and NADPH to isocitrate dehydrogenase. The composite fluorescence anisotropy indicates the shorter (1.3-1.6 ns) decay component to be accompanied by local motion of the nicotinamide ring, pointing to attachment solely via the adenine moiety. For the longer lifetime (3.2-4.4 ns), the nicotinamide conformational freedom is found to be fully restricted. As full and partial nicotinamide binding are recognized steps in dehydrogenase catalysis, our results unify photophysical, structural, and functional aspects of NADH and NADPH binding and clarify the biochemical processes that underlie their contrasting intracellular lifetimes.


Asunto(s)
NAD , Niacinamida , NAD/química , NAD/metabolismo , NADP , Fluorescencia , Catálisis
4.
Org Biomol Chem ; 18(45): 9231-9245, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-32966518

RESUMEN

Fluorescent probes are increasingly used as reporter molecules in a wide variety of biophysical experiments, but when designing new compounds it can often be difficult to anticipate the effect that changing chemical structure can have on cellular localisation and fluorescence behaviour. To provide further chemical rationale for probe design, a series of donor-acceptor diphenylacetylene fluorophores with varying lipophilicities and structures were synthesised and analysed in human epidermal cells using a range of cellular imaging techniques. These experiments showed that, within this family, the greatest determinants of cellular localisation were overall lipophilicity and the presence of ionisable groups. Indeed, compounds with high log D values (>5) were found to localise in lipid droplets, but conversion of their ester acceptor groups to the corresponding carboxylic acids caused a pronounced shift to localisation in the endoplasmic reticulum. Mildly lipophilic compounds (log D = 2-3) with strongly basic amine groups were shown to be confined to lysosomes i.e. an acidic cellular compartment, but sequestering this positively charged motif as an amide resulted in a significant change to cytoplasmic and membrane localisation. Finally, specific organelles including the mitochondria could be targeted by incorporating groups such as a triphenylphosphonium moiety. Taken together, this account illustrates a range of guiding principles that can inform the design of other fluorescent molecules but, moreover, has demonstrated that many of these diphenylacetylenes have significant utility as probes in a range of cellular imaging studies.


Asunto(s)
Colorantes Fluorescentes
5.
Sci Rep ; 9(1): 18907, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31827194

RESUMEN

An increasing volume of data suggests that changes in cellular metabolism have a major impact on the health of tissues and organs, including in the auditory system where metabolic alterations are implicated in both age-related and noise-induced hearing loss. However, the difficulty of access and the complex cyto-architecture of the organ of Corti has made interrogating the individual metabolic states of the diverse cell types present a major challenge. Multiphoton fluorescence lifetime imaging microscopy (FLIM) allows label-free measurements of the biochemical status of the intrinsically fluorescent metabolic cofactors NADH and NADPH with subcellular spatial resolution. However, the interpretation of NAD(P)H FLIM measurements in terms of the metabolic state of the sample are not completely understood. We have used this technique to explore changes in metabolism associated with hearing onset and with acquired (age-related and noise-induced) hearing loss. We show that these conditions are associated with altered NAD(P)H fluorescence lifetimes, use a simple cell model to confirm an inverse relationship between τbound and oxidative stress, and propose such changes as a potential index of oxidative stress applicable to all mammalian cell types.


Asunto(s)
Cóclea/metabolismo , Pérdida Auditiva Provocada por Ruido/metabolismo , Pérdida Auditiva Sensorineural/metabolismo , NADP/metabolismo , Estrés Oxidativo/fisiología , Envejecimiento/metabolismo , Animales , Células HEK293 , Humanos , Ratones , Microscopía de Fluorescencia por Excitación Multifotónica , Especies Reactivas de Oxígeno/metabolismo
6.
Cancer Metab ; 7: 7, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31346464

RESUMEN

BACKGROUND: Mitochondrial oxidative phosphorylation (OXPHOS) via the respiratory chain is required for the maintenance of tumour cell proliferation and regulation of epithelial to mesenchymal transition (EMT)-related phenotypes through mechanisms that are not fully understood. The essential mitochondrial import protein coiled-coil helix coiled-coil helix domain-containing protein 4 (CHCHD4) controls respiratory chain complex activity and oxygen consumption, and regulates the growth of tumours in vivo. In this study, we interrogate the importance of CHCHD4-regulated mitochondrial metabolism for tumour cell proliferation and EMT-related phenotypes, and elucidate key pathways involved. RESULTS: Using in silico analyses of 967 tumour cell lines, and tumours from different cancer patient cohorts, we show that CHCHD4 expression positively correlates with OXPHOS and proliferative pathways including the mTORC1 signalling pathway. We show that CHCHD4 expression significantly correlates with the doubling time of a range of tumour cell lines, and that CHCHD4-mediated tumour cell growth and mTORC1 signalling is coupled to respiratory chain complex I (CI) activity. Using global metabolomics analysis, we show that CHCHD4 regulates amino acid metabolism, and that CHCHD4-mediated tumour cell growth is dependent on glutamine. We show that CHCHD4-mediated tumour cell growth is linked to CI-regulated mTORC1 signalling and amino acid metabolism. Finally, we show that CHCHD4 expression in tumours is inversely correlated with EMT-related gene expression, and that increased CHCHD4 expression in tumour cells modulates EMT-related phenotypes. CONCLUSIONS: CHCHD4 drives tumour cell growth and activates mTORC1 signalling through its control of respiratory chain mediated metabolism and complex I biology, and also regulates EMT-related phenotypes of tumour cells.

7.
Nat Commun ; 10(1): 2474, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31171772

RESUMEN

Diabetes is a global health problem caused primarily by the inability of pancreatic ß-cells to secrete adequate levels of insulin. The molecular mechanisms underlying the progressive failure of ß-cells to respond to glucose in type-2 diabetes remain unresolved. Using a combination of transcriptomics and proteomics, we find significant dysregulation of major metabolic pathways in islets of diabetic ßV59M mice, a non-obese, eulipidaemic diabetes model. Multiple genes/proteins involved in glycolysis/gluconeogenesis are upregulated, whereas those involved in oxidative phosphorylation are downregulated. In isolated islets, glucose-induced increases in NADH and ATP are impaired and both oxidative and glycolytic glucose metabolism are reduced. INS-1 ß-cells cultured chronically at high glucose show similar changes in protein expression and reduced glucose-stimulated oxygen consumption: targeted metabolomics reveals impaired metabolism. These data indicate hyperglycaemia induces metabolic changes in ß-cells that markedly reduce mitochondrial metabolism and ATP synthesis. We propose this underlies the progressive failure of ß-cells in diabetes.


Asunto(s)
Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/genética , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Perfilación de la Expresión Génica , Gluconeogénesis , Glucólisis , Secreción de Insulina , Metabolómica , Ratones , Ratones Transgénicos , NAD/metabolismo , Fosforilación Oxidativa , Consumo de Oxígeno , Canales de Potasio de Rectificación Interna/genética , Proteómica
8.
Chem Sci ; 10(17): 4673-4683, 2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31123578

RESUMEN

Photoactivation of photosensitisers can be utilised to elicit the production of ROS, for potential therapeutic applications, including the destruction of diseased tissues and tumours. A novel class of photosensitiser, exemplified by DC324, has been designed possessing a modular, low molecular weight and 'drug-like' structure which is bioavailable and can be photoactivated by UV-A/405 nm or corresponding two-photon absorption of near-IR (800 nm) light, resulting in powerful cytotoxic activity, ostensibly through the production of ROS in a cellular environment. A variety of in vitro cellular assays confirmed ROS formation and in vivo cytotoxic activity was exemplified via irradiation and subsequent targeted destruction of specific areas of a zebrafish embryo.

9.
J Phys Chem B ; 123(22): 4705-4717, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31021092

RESUMEN

Two-photon absorption (2PA) finds widespread application in biological systems, which frequently exhibit heterogeneous fluorescence decay dynamics corresponding to multiple species or environments. By combining polarized 2PA with time-resolved fluorescence intensity and anisotropy decay measurements, we show how the two-photon transition tensors for the components of a heterogeneous population can be separately determined, allowing structural differences between the two fluorescent states of the redox cofactor NAD(P)H to be identified. The results support the view that the two states correspond to alternate configurations of the nicotinamide ring, rather than folded and extended conformations of the entire molecule.

10.
Methods Mol Biol ; 1928: 365-387, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30725465

RESUMEN

Altered metabolism is a hallmark of cancer, both resulting from and driving oncogenesis. The NAD and NADP redox couples play a key role in a large number of the metabolic pathways involved. In their reduced forms, NADH and NADPH, these molecules are intrinsically fluorescent. As the average time for fluorescence to be emitted following excitation by a laser pulse, the fluorescence lifetime, is exquisitely sensitive to changes in the local environment of the fluorophore, imaging the fluorescence lifetime of NADH and NADPH offers the potential for label-free monitoring of metabolic changes inside living tumors. Here, we describe the biological, photophysical, and methodological considerations required to establish fluorescence lifetime imaging (FLIM) of NAD(P)H as a routine method for profiling the metabolism of living cancer cells and tissues.


Asunto(s)
Neoplasias Hepáticas/metabolismo , Metaboloma , Metabolómica , NADP/metabolismo , Imagen Óptica , Análisis de Datos , Metabolismo Energético , Humanos , Neoplasias Hepáticas/diagnóstico , Metabolómica/métodos , Microscopía Fluorescente , Imagen Óptica/métodos , Proyectos de Investigación
11.
Tissue Eng Part A ; 24(17-18): 1364-1376, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29580181

RESUMEN

Complications that arise from impaired fracture healing have considerable socioeconomic implications. Current research in the field of bone tissue engineering predominantly aims to mimic the mature bone tissue microenvironment. This approach, however, may produce implants that are intrinsically unresponsive to the cues present during the initiation of fracture repair. As such, this study describes the development of decellularized xenogeneic hyaline cartilage matrix in an attempt to mimic the initial reparative phase of fracture repair. Three approaches based on vacuum-assisted osmotic shock (Vac-OS), Triton X-100 (Vac-STx), and sodium dodecyl sulfate (Vac-SDS) were investigated. The Vac-OS methodology reduced DNA content below 50 ng/mg of tissue, while retaining 85% of the sulfate glycosaminoglycan content, and as such was selected as the optimal methodology for decellularization. The resultant Vac-OS scaffolds (decellularized extracellular matrix [dcECM]) were also devoid of the immunogenic alpha-Gal epitope. Furthermore, minimal disruption to the structural integrity of the dcECM was demonstrated using differential scanning calorimetry and fluorescence lifetime imaging microscopy. The biological integrity of the dcECM was confirmed by its ability to drive the chondrogenic commitment and differentiation of human chondrocytes and periosteum-derived cells, respectively. Furthermore, histological examination of dcECM constructs implanted in immunocompetent mice revealed a predominantly M2 macrophage-driven regenerative response both at 2 and 8 weeks postimplantation. These findings contrasted with the implanted native costal cartilage that elicited a predominantly M1 macrophage-mediated inflammatory response. This study highlights the capacity of dcECM from the Vac-OS methodology to direct the key biological processes of endochondral ossification, thus potentially recapitulating the callus phase of fracture repair.


Asunto(s)
Callo Óseo/metabolismo , Cartílago/química , Condrocitos/metabolismo , Condrogénesis , Matriz Extracelular/química , Animales , Callo Óseo/citología , Técnicas de Cultivo de Célula , Condrocitos/citología , Humanos , Porcinos
12.
Bio Protoc ; 7(2)2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-28286806

RESUMEN

NADH and NADPH are redox cofactors, primarily involved in catabolic and anabolic metabolic processes respectively. In addition, NADPH plays an important role in cellular antioxidant defence. In live cells and tissues, the intensity of their spectrally-identical autofluorescence, termed NAD(P)H, can be used to probe the mitochondrial redox state, while their distinct enzyme-binding characteristics can be used to separate their relative contributions to the total NAD(P)H intensity using fluorescence lifetime imaging microscopy (FLIM). These protocols allow differences in metabolism to be detected between cell types and altered physiological and pathological states.

13.
J Phys Chem C Nanomater Interfaces ; 121(3): 1507-1514, 2017 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-28217242

RESUMEN

Most fluorescent proteins exhibit multiexponential fluorescence decays, indicating a heterogeneous excited state population. FRET between fluorescent proteins should therefore involve multiple energy transfer pathways. We recently demonstrated the FRET pathways between EGFP and mCherry (mC), upon the dimerization of 3-phosphoinositide dependent protein kinase 1 (PDK1), to be highly restricted. A mechanism for FRET restriction based on a highly unfavorable κ2 orientation factor arising from differences in donor-acceptor transition dipole moment angles in a far from coplanar and near static interaction geometry was proposed. Here this is tested via FRET to mC arising from the association of glutathione (GSH) and glutathione S-transferase (GST) with an intrinsically homogeneous and more mobile donor Oregon Green 488 (OG). A new analysis of the acceptor window intensity, based on the turnover point of the sensitized fluorescence, is combined with donor window intensity and anisotropy measurements which show that unrestricted FRET to mC takes place. However, a long-lived anisotropy decay component in the donor window reveals a GST-GSH population in which FRET does not occur, explaining previous discrepancies between quantitative FRET measurements of GST-GSH association and their accepted values. This reinforces the importance of the local donor-acceptor environment in mediating energy transfer and the need to perform spectrally resolved intensity and anisotropy decay measurements in the accurate quantification of fluorescent protein FRET.

14.
Free Radic Biol Med ; 100: 53-65, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27519271

RESUMEN

The redox states of the NAD and NADP pyridine nucleotide pools play critical roles in defining the activity of energy producing pathways, in driving oxidative stress and in maintaining antioxidant defences. Broadly speaking, NAD is primarily engaged in regulating energy-producing catabolic processes, whilst NADP may be involved in both antioxidant defence and free radical generation. Defects in the balance of these pathways are associated with numerous diseases, from diabetes and neurodegenerative disease to heart disease and cancer. As such, a method to assess the abundance and redox state of these separate pools in living tissues would provide invaluable insight into the underlying pathophysiology. Experimentally, the intrinsic fluorescence of the reduced forms of both redox cofactors, NADH and NADPH, has been used for this purpose since the mid-twentieth century. In this review, we outline the modern implementation of these techniques for studying mitochondrial redox state in complex tissue preparations. As the fluorescence spectra of NADH and NADPH are indistinguishable, interpreting the signals resulting from their combined fluorescence, often labelled NAD(P)H, can be complex. We therefore discuss recent studies using fluorescence lifetime imaging microscopy (FLIM) which offer the potential to discriminate between the two separate pools. This technique provides increased metabolic information from cellular autofluorescence in biomedical investigations, offering biochemical insights into the changes in time-resolved NAD(P)H fluorescence signals observed in diseased tissues.


Asunto(s)
Microscopía Fluorescente/métodos , Mitocondrias/metabolismo , NADP/química , NAD/química , Oxidación-Reducción , Metabolismo Energético , Fluorescencia , Humanos , NAD/metabolismo , NADP/metabolismo
15.
EMBO Mol Med ; 8(5): 569-85, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27138568

RESUMEN

Triple-negative breast cancer (TNBC) represents the most aggressive breast tumor subtype. However, the molecular determinants responsible for the metastatic TNBC phenotype are only partially understood. We here show that expression of the mitochondrial calcium uniporter (MCU), the selective channel responsible for mitochondrial Ca(2+) uptake, correlates with tumor size and lymph node infiltration, suggesting that mitochondrial Ca(2+) uptake might be instrumental for tumor growth and metastatic formation. Accordingly, MCU downregulation hampered cell motility and invasiveness and reduced tumor growth, lymph node infiltration, and lung metastasis in TNBC xenografts. In MCU-silenced cells, production of mitochondrial reactive oxygen species (mROS) is blunted and expression of the hypoxia-inducible factor-1α (HIF-1α) is reduced, suggesting a signaling role for mROS and HIF-1α, downstream of mitochondrial Ca(2+) Finally, in breast cancer mRNA samples, a positive correlation of MCU expression with HIF-1α signaling route is present. Our results indicate that MCU plays a central role in TNBC growth and metastasis formation and suggest that mitochondrial Ca(2+) uptake is a potential novel therapeutic target for clinical intervention.


Asunto(s)
Canales de Calcio/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Invasividad Neoplásica , Metástasis de la Neoplasia/patología , Neoplasias de la Mama Triple Negativas/patología , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Silenciador del Gen , Xenoinjertos , Humanos , Ratones SCID , Especies Reactivas de Oxígeno/metabolismo
16.
Cell Metab ; 22(3): 472-84, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26256392

RESUMEN

Mitochondrial reactive oxygen species (ROS) play a central role in most aging-related diseases. ROS are produced at the respiratory chain that demands NADH for electron transport and are eliminated by enzymes that require NADPH. The nicotinamide nucleotide transhydrogenase (Nnt) is considered a key antioxidative enzyme based on its ability to regenerate NADPH from NADH. Here, we show that pathological metabolic demand reverses the direction of the Nnt, consuming NADPH to support NADH and ATP production, but at the cost of NADPH-linked antioxidative capacity. In heart, reverse-mode Nnt is the dominant source for ROS during pressure overload. Due to a mutation of the Nnt gene, the inbred mouse strain C57BL/6J is protected from oxidative stress, heart failure, and death, making its use in cardiovascular research problematic. Targeting Nnt-mediated ROS with the tetrapeptide SS-31 rescued mortality in pressure overload-induced heart failure and could therefore have therapeutic potential in patients with this syndrome.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Mitocondrias Cardíacas/metabolismo , NADP Transhidrogenasas/metabolismo , NADP/metabolismo , Estrés Oxidativo , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , Glutatión/metabolismo , Insuficiencia Cardíaca/patología , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/patología , Especies Reactivas de Oxígeno/metabolismo
17.
Nat Commun ; 5: 3936, 2014 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-24874098

RESUMEN

NAD is a key determinant of cellular energy metabolism. In contrast, its phosphorylated form, NADP, plays a central role in biosynthetic pathways and antioxidant defence. The reduced forms of both pyridine nucleotides are fluorescent in living cells but they cannot be distinguished, as they are spectrally identical. Here, using genetic and pharmacological approaches to perturb NAD(P)H metabolism, we find that fluorescence lifetime imaging (FLIM) differentiates quantitatively between the two cofactors. Systematic manipulations to change the balance between oxidative and glycolytic metabolism suggest that these states do not directly impact NAD(P)H fluorescence decay rates. The lifetime changes observed in cancers thus likely reflect shifts in the NADPH/NADH balance. Using a mathematical model, we use these experimental data to quantify the relative levels of NADH and NADPH in different cell types of a complex tissue, the mammalian cochlea. This reveals NADPH-enriched populations of cells, raising questions about their distinct metabolic roles.


Asunto(s)
Cóclea/química , Glucólisis , NADP/análisis , NAD/análisis , Imagen Óptica/métodos , Oxidación-Reducción , Animales , Metabolismo Energético , Fluorescencia , Células HEK293 , Humanos , NAD/metabolismo , NADP/metabolismo , Ratas
18.
Best Pract Res Clin Endocrinol Metab ; 26(6): 711-23, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23168274

RESUMEN

Mitochondria are membrane bound organelles present in almost all eukaryotic cells. Responsible for orchestrating cellular energy production, they are central to the maintenance of life and the gatekeepers of cell death. Thought to have originated from symbiotic ancestors, they carry a residual genome as mtDNA encoding 13 proteins essential for respiratory chain function. Mitochondria comprise an inner and outer membrane that separate and maintain the aqueous regions, the intermembrane space and the matrix. Mitochondria contribute to many processes central to cellular function and dysfunction including calcium signalling, cell growth and differentiation, cell cycle control and cell death. Mitochondrial shape and positioning in cells is crucial and is tightly regulated by processes of fission and fusion, biogenesis and autophagy, ensuring a relatively constant mitochondrial population. Mitochondrial dysfunction is implicated in metabolic and age related disorders, neurodegenerative diseases and ischemic injury in heart and brain.


Asunto(s)
Mitocondrias/fisiología , Animales , Señalización del Calcio , Muerte Celular/fisiología , Ciclo del Ácido Cítrico , Metabolismo Energético , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA