Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Neurobiol Learn Mem ; 203: 107793, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37353191

RESUMEN

The orbitofrontal cortex (OFC) is regarded as one of the core brain areas in a variety of value-based behaviors. Over the past two decades, tremendous knowledge about the OFC function was gained from studying the behaviors of single subjects. As a result, our previous understanding of the OFC's function of encoding decision variables, such as the value and identity of choices, has evolved to the idea that the OFC encodes a more complex representation of the task space as a cognitive map. Accumulating evidence also indicates that the OFC importantly contributes to behaviors in social contexts, especially those involved in cooperative interactions. However, it remains elusive how exactly OFC neurons contribute to social functions and how non-social and social behaviors are related to one another in the computations performed by OFC neurons. In this review, we aim to provide an integrated view of the OFC function across both social and non-social behavioral contexts. We propose that seemingly complex functions of the OFC may be explained by its role in providing a goal-directed cognitive map to guide a wide array of adaptive reward-based behaviors in both social and non-social domains.


Asunto(s)
Objetivos , Corteza Prefrontal , Humanos , Corteza Prefrontal/fisiología , Motivación , Encéfalo , Cognición , Recompensa
2.
Schizophr Res ; 245: 50-58, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35177284

RESUMEN

Humans navigate complex situations that require the accurate estimation of the controllability of the environment. Aberrant controllability computation might lead to maladaptive behaviors and poor mental health outcomes. Illusion of control, which refers to a heightened sense of control while the environment is uncontrollable, is one such manifestation and has been conceptually associated with delusional ideation. Nevertheless, this association has not yet been formally characterized in a computational framework. To address this, we used a computational psychiatry approach to quantify illusion of control in human participants with high (n = 125) or low (n = 126) trait delusion. Participants played a two-party exchange game in which their choices either did ("Controllable condition") or did not ("Uncontrollable condition") influence the future monetary offers made by simulated partners. We found that the two groups behaved similarly in model-agnostic measures (i.e., offer size, rejection rate). However, computational modeling revealed that compared to the low trait delusion group, the high delusion group overestimated their influence ("expected influence" parameter) over the offers made by their partners under the Uncontrollable condition. Highly delusional individuals also reported a stronger sense of control than those with low trait delusion in the Uncontrollable condition. Furthermore, the expected influence parameter and self-reported beliefs about controllability were significantly correlated in the Controllable condition in individuals with low trait delusion, whereas this relationship was diminished in those with high trait delusion. Collectively, these findings demonstrate that delusional ideation is associated with aberrant computation of and belief about environmental controllability, as well as a belief-behavior disconnect.


Asunto(s)
Deluciones , Ilusiones , Deluciones/psicología , Humanos , Autoinforme
3.
Elife ; 102021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34711304

RESUMEN

The controllability of our social environment has a profound impact on our behavior and mental health. Nevertheless, neurocomputational mechanisms underlying social controllability remain elusive. Here, 48 participants performed a task where their current choices either did (Controllable), or did not (Uncontrollable), influence partners' future proposals. Computational modeling revealed that people engaged a mental model of forward thinking (FT; i.e., calculating the downstream effects of current actions) to estimate social controllability in both Controllable and Uncontrollable conditions. A large-scale online replication study (n=1342) supported this finding. Using functional magnetic resonance imaging (n=48), we further demonstrated that the ventromedial prefrontal cortex (vmPFC) computed the projected total values of current actions during forward planning, supporting the neural realization of the forward-thinking model. These findings demonstrate that humans use vmPFC-dependent FT to estimate and exploit social controllability, expanding the role of this neurocomputational mechanism beyond spatial and cognitive contexts.


Asunto(s)
Corteza Prefrontal/fisiología , Interacción Social , Pensamiento/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Texas , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA