Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Physiol Endocrinol Metab ; 327(2): E172-E182, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38836779

RESUMEN

Insulin resistance (IR) is a risk factor for the development of several major metabolic diseases. Muscle fiber composition is established early in life and is associated with insulin sensitivity. Hence, muscle fiber composition was used to identify early defects in the development of IR in healthy young individuals in the absence of clinical manifestations. Biopsies were obtained from the thigh muscle, followed by an intravenous glucose tolerance test. Indices of insulin action were calculated and cardiovascular measurements, analyses of blood and muscle were performed. Whole body insulin sensitivity (SIgalvin) was positively related to expression of type I muscle fibers (r = 0.49; P < 0.001) and negatively related to resting heart rate (HR, r = -0.39; P < 0.001), which was also negatively related to expression of type I muscle fibers (r = -0.41; P < 0.001). Muscle protein expression of endothelial nitric oxide synthase (eNOS), whose activation results in vasodilation, was measured in two subsets of subjects expressing a high percentage of type I fibers (59 ± 6%; HR = 57 ± 9 beats/min; SIgalvin = 1.8 ± 0.7 units) or low percentage of type I fibers (30 ± 6%; HR = 71 ± 11; SIgalvin = 0.8 ± 0.3 units; P < 0.001 for all variables vs. first group). eNOS expression was 1) higher in subjects with high type I expression; 2) almost twofold higher in pools of type I versus II fibers; 3) only detected in capillaries surrounding muscle fibers; and 4) linearly associated with SIgalvin. These data demonstrate that an altered function of the autonomic nervous system and a compromised capacity for vasodilation in the microvasculature occur early in the development of IR.NEW & NOTEWORTHY Insulin resistance (IR) is a risk factor for the development of several metabolic diseases. In healthy young individuals, an elevated heart rate (HR) correlates with low insulin sensitivity and high expression of type II skeletal muscle fibers, which express low levels of endothelial nitric oxide synthase (eNOS) and, hence, a limited capacity to induce vasodilation in response to insulin. Early targeting of the autonomic nervous system and microvasculature may attenuate development of diseases stemming from insulin resistance.


Asunto(s)
Frecuencia Cardíaca , Resistencia a la Insulina , Músculo Esquelético , Óxido Nítrico Sintasa de Tipo III , Humanos , Resistencia a la Insulina/fisiología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Masculino , Frecuencia Cardíaca/fisiología , Adulto Joven , Músculo Esquelético/metabolismo , Femenino , Adulto , Prueba de Tolerancia a la Glucosa , Fibras Musculares de Contracción Lenta/metabolismo , Insulina/metabolismo , Insulina/sangre
2.
Acta Physiol (Oxf) ; 238(4): e13972, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37017615

RESUMEN

AIM: The purpose of this study was to 1. investigate if glucose tolerance is affected after one acute bout of different types of exercise; 2. assess if potential differences between two exercise paradigms are related to changes in mitochondrial function; and 3. determine if endurance athletes differ from nonendurance-trained controls in their metabolic responses to the exercise paradigms. METHODS: Nine endurance athletes (END) and eight healthy nonendurance-trained controls (CON) were studied. Oral glucose tolerance tests (OGTT) and mitochondrial function were assessed on three occasions: in the morning, 14 h after an overnight fast without prior exercise (RE), as well as after 3 h of prolonged continuous exercise at 65% of VO2 max (PE) or 5 × 4 min at ~95% of VO2 max (HIIT) on a cycle ergometer. RESULTS: Glucose tolerance was markedly reduced in END after PE compared with RE. END also exhibited elevated fasting serum FFA and ketones levels, reduced insulin sensitivity and glucose oxidation, and increased fat oxidation during the OGTT. CON showed insignificant changes in glucose tolerance and the aforementioned measurements compared with RE. HIIT did not alter glucose tolerance in either group. Neither PE nor HIIT affected mitochondrial function in either group. END also exhibited increased activity of 3-hydroxyacyl-CoA dehydrogenase activity in muscle extracts vs. CON. CONCLUSION: Prolonged exercise reduces glucose tolerance and increases insulin resistance in endurance athletes the following day. These findings are associated with an increased lipid load, a high capacity to oxidize lipids, and increased fat oxidation.


Asunto(s)
Glucosa , Resistencia a la Insulina , Humanos , Glucosa/metabolismo , Glucemia/metabolismo , Ejercicio Físico/fisiología , Insulina/metabolismo , Atletas , Resistencia Física
3.
Am J Physiol Endocrinol Metab ; 324(5): E390-E401, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36791323

RESUMEN

There is a debate on whether lipid-mediated insulin resistance derives from an increased or decreased capacity of muscle to oxidize fats. Here, we examine the involvement of muscle fiber composition in the metabolic responses to a 3-day fast (starvation, which results in increases in plasma lipids and insulin resistance) in two groups of healthy young subjects: 1), area occupied by type I fibers = 61.0 ± 11.8%; 2), type I area = 36.0 ± 4.9% (P < 0.001). Muscle biopsies and intravenous glucose tolerance tests were performed after an overnight fast and after starvation. Biopsies were analyzed for muscle fiber composition and mitochondrial respiration. Indices of glucose tolerance and insulin sensitivity were determined. Glucose tolerance was similar in both groups after an overnight fast and deteriorated to a similar degree in both groups after starvation. In contrast, whole body insulin sensitivity decreased markedly after starvation in group 1 (P < 0.01), whereas the decrease in group 2 was substantially smaller (P = 0.06). Nonesterified fatty acids and ß-hydroxybutyrate levels in plasma after an overnight fast were similar between groups and increased markedly and comparably in both groups after starvation, demonstrating similar degrees of lipid load. The capacity of permeabilized muscle fibers to oxidize lipids was significantly higher in group 1 versus 2, whereas there was no significant difference in pyruvate oxidation between groups. The data demonstrate that loss of whole body insulin sensitivity after short-term starvation is a function of muscle fiber composition and is associated with an elevated rather than a diminished capacity of muscle to oxidize lipids.NEW & NOTEWORTHY Whether lipid-mediated insulin resistance occurs as a result of an increased or decreased capacity of skeletal muscle to oxidize lipids has been debated. We show that a 3-day fast results in increases in circulating lipids and insulin resistance in subjects expressing a high or low proportion of type I muscle fibers. High expression of type I is associated with a higher capacity to oxidize lipids and a greater loss of insulin sensitivity after starvation.


Asunto(s)
Resistencia a la Insulina , Inanición , Humanos , Ácidos Grasos no Esterificados/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Músculo Esquelético/metabolismo , Inanición/metabolismo , Lípidos , Metabolismo de los Lípidos , Oxidación-Reducción
4.
Am J Physiol Cell Physiol ; 324(2): C477-C487, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36622074

RESUMEN

Gi-coupled protein receptor 81 (GPR81) was first identified in adipocytes as a receptor for l-lactate, which upon binding inhibits cyclicAMP (cAMP)-protein kinase (PKA)-cAMP-response element binding (CREB) signaling. Moreover, incubation of myotubes with lactate augments expression of GPR81 and genes and proteins involved in lactate- and energy metabolism. However, characterization of GPR81 expression and investigation of related signaling in human skeletal muscle under conditions of elevated circulating lactate levels are lacking. Muscle biopsies were obtained from healthy men and women at rest, after leg extension exercise, with or without venous infusion of sodium lactate, and 90 and 180 min after exercise (8 men and 8 women). Analyses included protein and mRNA levels of GPR81, as well as GPR81-dependent signaling molecules. GPR81 expression was 2.5-fold higher in type II glycolytic compared with type I oxidative muscle fibers, and the expression was inversely related to the percentage of type I muscle fibers. Muscle from women expressed about 25% more GPR81 protein than from men. Global PKA activity increased by 5%-8% after exercise, with no differences between trials. CREBS133 phosphorylation was reduced by 30% after exercise and remained repressed during the entire trials, with no influence of the lactate infusion. The mRNA expression of vascular endothelial growth factor (VEGF) and peroxisome-proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) were increased by 2.5-6-fold during recovery, and that of lactate dehydrogenase reduced by 15% with no differences between trials for any gene at any time point. The high expression of GPR81-protein in type II fibers suggests that lactate functions as an autocrine signaling molecule in muscle; however, lactate does not appear to regulate CREB signaling during exercise.


Asunto(s)
Comunicación Autocrina , Ácido Láctico , Femenino , Humanos , Masculino , Ácido Láctico/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
5.
J Clin Endocrinol Metab ; 107(7): e2729-e2737, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35405014

RESUMEN

CONTEXT: Muscle fiber composition is associated with peripheral insulin action. OBJECTIVE: We investigated whether extreme differences in muscle fiber composition are associated with alterations in peripheral insulin action and secretion in young, healthy subjects who exhibit normal fasting glycemia and insulinemia. METHODS: Relaxation time following a tetanic contraction was used to identify subjects with a high or low expression of type I muscle fibers: group 1 (n = 11), area occupied by type I muscle fibers = 61.0 ± 11.8%, and group 2 (n = 8), type I area = 36.0 ± 4.9% (P < 0.001). Biopsies were obtained from the vastus lateralis muscle and analyzed for mitochondrial respiration on permeabilized fibers, muscle fiber composition, and capillary density. An intravenous glucose tolerance test was performed and indices of glucose tolerance, insulin sensitivity, and secretion were determined. RESULTS: Glucose tolerance was similar between groups, whereas whole-body insulin sensitivity was decreased by ~50% in group 2 vs group 1 (P = 0.019). First-phase insulin release (area under the insulin curve during 10 minutes after glucose infusion) was increased by almost 4-fold in group 2 vs group 1 (P = 0.01). Whole-body insulin sensitivity was correlated with percentage area occupied by type I fibers (r = 0.54; P = 0.018) and capillary density in muscle (r = 0.61; P = 0.005) but not with mitochondrial respiration. Insulin release was strongly related to percentage area occupied by type II fibers (r = 0.93; P < 0.001). CONCLUSIONS: Assessment of muscle contractile function in young healthy subjects may prove useful in identifying individuals with insulin resistance and enhanced glucose-stimulated insulin secretion prior to onset of clinical manifestations.


Asunto(s)
Resistencia a la Insulina , Enfermedades Musculares , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Secreción de Insulina , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo , Músculo Cuádriceps/metabolismo
6.
Am J Physiol Endocrinol Metab ; 320(4): E691-E701, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33554777

RESUMEN

Phosphorylase is one of the most carefully studied proteins in history, but knowledge of its regulation during intense muscle contraction is incomplete. Tyrosine nitration of purified preparations of skeletal muscle phosphorylase results in inactivation of the enzyme and this is prevented by antioxidants. Whether an altered redox state affects phosphorylase activity and glycogenolysis in contracting muscle is not known. Here, we investigate the role of the redox state in control of phosphorylase and glycogenolysis in isolated mouse fast-twitch (extensor digitorum longus, EDL) and slow-twitch (soleus) muscle preparations during repeated contractions. Exposure of crude muscle extracts to H2O2 had little effect on phosphorylase activity. However, exposure of extracts to peroxynitrite (ONOO-), a nitrating/oxidizing agent, resulted in complete inactivation of phosphorylase (half-maximal inhibition at ∼200 µM ONOO-), which was fully reversed by the presence of an ONOO- scavanger, dithiothreitol (DTT). Incubation of isolated muscles with ONOO- resulted in nitration of phosphorylase and marked inhibition of glycogenolysis during repeated contractions. ONOO- also resulted in large decreases in high-energy phosphates (ATP and phosphocreatine) in the rested state and following repeated contractions. These metabolic changes were associated with decreased force production during repeated contractions (to ∼60% of control). In contrast, repeated contractions did not result in nitration of phosphorylase, nor did DTT or the general antioxidant N-acetylcysteine alter glycogenolysis during repeated contractions. These findings demonstrate that ONOO- inhibits phosphorylase and glycogenolysis in living muscle under extreme conditions. However, nitration does not play a significant role in control of phosphorylase and glycogenolysis during repeated contractions.NEW & NOTEWORTHY Here we show that exogenous peroxynitrite results in nitration of phosphorylase as well as inhibition of glycogenolysis in isolated intact mouse skeletal muscle during short-term repeated contractions. However, repeated contractions in the absence of exogenous peroxynitrite do not result in nitration of phosphorylase or affect glycogenolysis, nor does the addition of antioxidants alter glycogenolysis during repeated contractions. Thus phosphorylase is not subject to redox control during repeated contractions.


Asunto(s)
Glucogenólisis , Músculo Esquelético/metabolismo , Estrés Nitrosativo/fisiología , Fosforilasas/metabolismo , Animales , Glucógeno/metabolismo , Glucogenólisis/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Músculo Esquelético/efectos de los fármacos , Nitratos/metabolismo , Nitratos/farmacología , Ácido Peroxinitroso/metabolismo , Ácido Peroxinitroso/farmacología , Fosforilasas/efectos de los fármacos
8.
Pflugers Arch ; 471(10): 1305-1316, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31451903

RESUMEN

Fight or flight is a biologic phenomenon that involves activation of ß-adrenoceptors in skeletal muscle. However, how force generation is enhanced through adrenergic activation in different muscle types is not fully understood. We studied the effects of isoproterenol (ISO, ß-receptor agonist) on force generation and energy metabolism in isolated mouse soleus (SOL, oxidative) and extensor digitorum longus (EDL, glycolytic) muscles. Muscles were stimulated with isometric tetanic contractions and analyzed for metabolites and phosphorylase activity. Under conditions of maximal force production, ISO enhanced force generation markedly more in SOL (22%) than in EDL (8%). Similarly, during a prolonged tetanic contraction (30 s for SOL and 10 s for EDL), ISO-enhanced the force × time integral more in SOL (25%) than in EDL (3%). ISO induced marked activation of phosphorylase in both muscles in the basal state, which was associated with glycogenolysis (less in SOL than in EDL), and in EDL only, a significant decrease (16%) in inorganic phosphate (Pi). ATP turnover during sustained contractions (1 s EDL, 5 s SOL) was not affected by ISO in EDL, but essentially doubled in SOL. Under conditions of maximal stimulation, ISO has a minor effect on force generation in EDL that is associated with a decrease in Pi, whereas ISO has a marked effect on force generation in SOL that is associated with an increase in ATP turnover. Thus, phosphorylase functions as a phosphate trap in ISO-mediated force enhancement in EDL and as a catalyzer of ATP supply in SOL.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Glucólisis , Isoproterenol/farmacología , Contracción Muscular , Fibras Musculares Esqueléticas/efectos de los fármacos , Fosforilación Oxidativa , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología
9.
J Appl Physiol (1985) ; 126(4): 1103-1109, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30730817

RESUMEN

The effects of temperature elevation after intense repeated contractions on glycogen and energy metabolism as well as contractile function of isolated mouse soleus muscle (slow twitch, oxidative) were investigated. Muscles were stimulated electrically to perform repeated tetanic contractions for 10 min at 25°C, which reduced tetanic force by ~85% and glycogen by 50%. After 120-min recovery at 25°C glycogen was fully restored (~125% of basal), whereas after recovery at 35°C glycogen decreased further (~25% of basal). Glycogen synthase fractional activity averaged 31.8 ± 3.1% (baseline = 33.8 ± 3.4%) after 120-min recovery at 25°C but was increased after recovery at 35°C (63.8 ± 4.8%; P < 0.001 vs. 25°C). Phosphorylase fractional and total activities were not affected by the higher temperature. However, recovery at 35°C resulted in a significantly higher content of the phosphorylase substrate inorganic phosphate (~20%; P < 0.01 vs. 25°C). Finally, fatigue development during a subsequent bout of repeated contractions at 25°C was similar after 120-min recovery at 25°C and 35°C. These data demonstrate that after intense contractions elevated temperature inhibits glycogen accumulation, likely by increasing the availability of the phosphorylase substrate inorganic phosphate, but has no effect on fatigue development. Thus after heat exposure phosphorylase plays a significant role in glycogen accumulation, and glycogen does not limit muscle performance in isolated mouse soleus muscle after recovery from elevated temperature. NEW & NOTEWORTHY Whether elevated temperature affects glycogen biogenesis and contractile performance of isolated slow-twitch muscle is not known. Here we show that after a bout of repeated contractions in isolated mouse soleus muscle at 25°C, increasing muscle temperature during recovery to 35°C blocked glycogen accumulation compared with recovery at 25°C. Surprisingly, during a subsequent bout of repeated contractions at 25°C, the rate of fatigue was not different between groups after recovery at the two temperatures.


Asunto(s)
Glucógeno/metabolismo , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Animales , Estimulación Eléctrica/métodos , Metabolismo Energético/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Muscular/fisiología , Fatiga Muscular/fisiología , Fosforilasas/metabolismo , Temperatura
10.
Am J Physiol Cell Physiol ; 315(5): C706-C713, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30156860

RESUMEN

The effects of heating on glycogen synthesis (incorporation of [14C]glucose into glycogen) and accumulation after intense repeated contractions were investigated. Isolated mouse extensor digitorum longus muscle (type II) was stimulated electrically to perform intense tetanic contractions at 25°C. After 120 min recovery at 25°C, glycogen accumulated to almost 80% of basal, whereas after recovery at 35°C, glycogen remained low (~25% of basal). Glycogen synthesis averaged 0.97 ± 0.07 µmol·30 min-1·g wet wt-1 during recovery at 25°C and 1.48 ± 0.08 during recovery at 35°C ( P < 0.001). There were no differences in phosphorylase and glycogen synthase total activities nor in phosphorylase fractional activity, whereas glycogen synthase fractional activity was increased by ~50% after recovery at 35°C vs. 25°C. Inorganic phosphate (Pi, substrate for phosphorylase) was markedly increased (~300% of basal) following contraction but returned to control levels after 120 min recovery at 25°C. In contrast, Pi remained elevated after recovery at 35°C (>2-fold higher than recovery at 25°C). Estimates of glycogen breakdown indicated that phosphorylase activity (either via inhibition at 25°C or activation at 35°C) was responsible for ~60% of glycogen accumulation during recovery at 25°C and ~45% during recovery at 35°C. These data demonstrate that despite the enhancing effect of heating on glycogen synthesis during recovery from intense contractions, glycogen accumulation is inhibited owing to Pi-mediated activation of phosphorylase. Thus phosphorylase can play a quantitatively important role in glycogen biogenesis during recovery from repeated contractions in isolated type II muscle.


Asunto(s)
Glucógeno Sintasa/genética , Glucógeno/metabolismo , Contracción Muscular/genética , Músculo Esquelético/metabolismo , Animales , Glucógeno/biosíntesis , Glucógeno Sintasa/metabolismo , Calefacción , Ratones , Contracción Muscular/fisiología , Músculo Esquelético/efectos de la radiación , Técnicas de Cultivo de Órganos , Fosfatos/metabolismo , Fosforilasas/genética , Fosforilasas/metabolismo
11.
Diabetes Care ; 40(9): 1256-1263, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28687542

RESUMEN

OBJECTIVE: Insulin increases glucose disposal in part by enhancing microvascular blood flow (MBF) and substrate delivery to myocytes. Insulin's microvascular action is impaired with insulin resistance and type 2 diabetes. Resistance training (RT) improves glycemic control and insulin sensitivity, but whether this improvement is linked to augmented skeletal muscle microvascular responses in type 2 diabetes is unknown. RESEARCH DESIGN AND METHODS: Seventeen (11 male and 6 female; 52 ± 2 years old) sedentary patients with type 2 diabetes underwent 6 weeks of whole-body RT. Before and after RT, participants who fasted overnight had clinical chemistries measured (lipids, glucose, HbA1c, insulin, and advanced glycation end products) and underwent an oral glucose challenge (OGC) (50 g × 2 h). Forearm muscle MBF was assessed by contrast-enhanced ultrasound, skin MBF by laser Doppler flowmetry, and brachial artery flow by Doppler ultrasound at baseline and 60 min post-OGC. A whole-body DEXA scan before and after RT assessed body composition. RESULTS: After RT, muscle MBF response to the OGC increased, while skin microvascular responses were unchanged. These microvascular adaptations were accompanied by improved glycemic control (fasting blood glucose, HbA1c, and glucose area under the curve [AUC] during OGC) and increased lean body mass and reductions in fasting plasma triglyceride, total cholesterol, advanced glycation end products, and total body fat. Changes in muscle MBF response after RT significantly correlated with reductions in fasting blood glucose, HbA1c, and OGC AUC with adjustment for age, sex, % body fat, and % lean mass. CONCLUSIONS: RT improves OGC-stimulated muscle MBF and glycemic control concomitantly, suggesting that MBF plays a role in improved glycemic control from RT.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/terapia , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/fisiología , Entrenamiento de Fuerza , Adiposidad , Antropometría , Glucemia/análisis , Composición Corporal , Arteria Braquial/metabolismo , Colesterol/sangre , Dieta , Femenino , Hemoglobina Glucada/análisis , Productos Finales de Glicación Avanzada/sangre , Humanos , Insulina/sangre , Resistencia a la Insulina , Masculino , Persona de Mediana Edad , Evaluación Nutricional , Conducta Sedentaria , Triglicéridos/sangre
12.
Ultrasound Med Biol ; 43(9): 2013-2023, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28655467

RESUMEN

Most methods of assessing flowmotion (rhythmic oscillation of blood flow through tissue) are limited to small sections of tissue and are invasive in tissues other than skin. To overcome these limitations, we adapted the contrast-enhanced ultrasound (CEUS) technique to assess microvascular flowmotion throughout a large region of tissue, in a non-invasive manner and in real time. Skeletal muscle flowmotion was assessed in anaesthetised Sprague Dawley rats, using CEUS and laser Doppler flowmetry (LDF) for comparison. Wavelet transformation of CEUS and LDF data was used to quantify flowmotion. The α-adrenoceptor antagonist phentolamine was infused to predictably blunt the neurogenic component of flowmotion. Both techniques identified similar flowmotion patterns, validating the use of CEUS to assess flowmotion. This study demonstrates for the first time that the novel technique of CEUS can be adapted for determination of skeletal muscle flowmotion in large regions of skeletal muscle.


Asunto(s)
Medios de Contraste , Aumento de la Imagen/métodos , Microcirculación , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/diagnóstico por imagen , Ultrasonografía/métodos , Animales , Masculino , Modelos Animales , Músculo Esquelético/fisiología , Ratas , Ratas Sprague-Dawley
13.
Clin Exp Pharmacol Physiol ; 44(1): 143-149, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27797410

RESUMEN

Skeletal muscle is an important site for insulin to regulate blood glucose levels. It is estimated that skeletal muscle is responsible for ~80% of insulin-mediated glucose disposal in the post-prandial period. The classical action of insulin to increase muscle glucose uptake involves insulin binding to insulin receptors on myocytes to stimulate glucose transporter 4 (GLUT 4) translocation to the cell surface membrane, enhancing glucose uptake. However, an additional role of insulin that is often under-appreciated is its action to increase muscle perfusion thereby improving insulin and glucose delivery to myocytes. Either of these responses (myocyte and/or vascular) may be impaired in insulin resistance, and both impairments are apparent in type 2 diabetes, resulting in diminished glucose disposal by muscle. The aim of this review is to report on the growing body of literature suggesting that insulin-mediated control of skeletal muscle perfusion is an important regulator of muscle glucose uptake and that impairment of microvascular insulin action has important physiological consequences early in the pathogenesis of insulin resistance. This work was discussed at the 2015 Australian Physiological Society Symposium "Physiological mechanisms controlling microvascular flow and muscle metabolism".


Asunto(s)
Resistencia a la Insulina/fisiología , Microcirculación/fisiología , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Flujo Sanguíneo Regional/fisiología , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...