Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 5: 4091, 2014 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-24909977

RESUMEN

DNA double-strand break (DSB) repair is a highly regulated process performed predominantly by non-homologous end joining (NHEJ) or homologous recombination (HR) pathways. How these pathways are coordinated in the context of chromatin is unclear. Here we uncover a role for histone H3K36 modification in regulating DSB repair pathway choice in fission yeast. We find Set2-dependent H3K36 methylation reduces chromatin accessibility, reduces resection and promotes NHEJ, while antagonistic Gcn5-dependent H3K36 acetylation increases chromatin accessibility, increases resection and promotes HR. Accordingly, loss of Set2 increases H3K36Ac, chromatin accessibility and resection, while Gcn5 loss results in the opposite phenotypes following DSB induction. Further, H3K36 modification is cell cycle regulated with Set2-dependent H3K36 methylation peaking in G1 when NHEJ occurs, while Gcn5-dependent H3K36 acetylation peaks in S/G2 when HR prevails. These findings support an H3K36 chromatin switch in regulating DSB repair pathway choice.


Asunto(s)
Acetiltransferasas/metabolismo , Cromatina/metabolismo , Reparación del ADN por Unión de Extremidades , Reparación del ADN , ADN de Hongos/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Reparación del ADN por Recombinación , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Acetilación , Metilación , Schizosaccharomyces/metabolismo
2.
Nucleic Acids Res ; 42(9): 5644-56, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24623809

RESUMEN

DNA double-strand breaks (DSBs) can cause chromosomal rearrangements and extensive loss of heterozygosity (LOH), hallmarks of cancer cells. Yet, how such events are normally suppressed is unclear. Here we identify roles for the DNA damage checkpoint pathway in facilitating homologous recombination (HR) repair and suppressing extensive LOH and chromosomal rearrangements in response to a DSB. Accordingly, deletion of Rad3(ATR), Rad26ATRIP, Crb2(53BP1) or Cdc25 overexpression leads to reduced HR and increased break-induced chromosome loss and rearrangements. We find the DNA damage checkpoint pathway facilitates HR, in part, by promoting break-induced Cdt2-dependent nucleotide synthesis. We also identify additional roles for Rad17, the 9-1-1 complex and Chk1 activation in facilitating break-induced extensive resection and chromosome loss, thereby suppressing extensive LOH. Loss of Rad17 or the 9-1-1 complex results in a striking increase in break-induced isochromosome formation and very low levels of chromosome loss, suggesting the 9-1-1 complex acts as a nuclease processivity factor to facilitate extensive resection. Further, our data suggest redundant roles for Rad3ATR and Exo1 in facilitating extensive resection. We propose that the DNA damage checkpoint pathway coordinates resection and nucleotide synthesis, thereby promoting efficient HR repair and genome stability.


Asunto(s)
Roturas del ADN de Doble Cadena , División del ADN , Inestabilidad Genómica , Reparación del ADN por Recombinación , Schizosaccharomyces/genética , Puntos de Control del Ciclo Celular , Quinasa de Punto de Control 2/metabolismo , Cromosomas Fúngicos/genética , Hibridación Genómica Comparativa , Exodesoxirribonucleasas/metabolismo , Genoma Fúngico , Pérdida de Heterocigocidad , Nucleótidos/biosíntesis , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...