Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharmacol Res Perspect ; 12(4): e1230, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38940379

RESUMEN

This study provides a detailed understanding of the preclinical pharmacokinetics and metabolism of ELP-004, an osteoclast inhibitor in development for the treatment of bone erosion. Current treatments for arthritis, including biological disease-modifying antirheumatic drugs, are not well-tolerated in a substantial subset of arthritis patients and are expensive; therefore, new treatments are needed. Pharmacokinetic parameters of ELP-004 were tested with intravenous, oral, and subcutaneous administration and found to be rapidly absorbed and distributed. We found that ELP-004 was non-mutagenic, did not induce chromosome aberrations, non-cardiotoxic, and had minimal off-target effects. Using in vitro hepatic systems, we found that ELP-004 is primarily metabolized by CYP1A2 and CYP2B6 and predicted metabolic pathways were identified. Finally, we show that ELP-004 inhibits osteoclast differentiation without suppressing overall T-cell function. These preclinical data will inform future development of an oral compound as well as in vivo efficacy studies in mice.


Asunto(s)
Osteoclastos , Animales , Ratones , Osteoclastos/efectos de los fármacos , Masculino , Evaluación Preclínica de Medicamentos , Femenino , Ratones Endogámicos C57BL , Administración Oral , Humanos , Diferenciación Celular/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Antirreumáticos/farmacología , Antirreumáticos/farmacocinética , Antirreumáticos/administración & dosificación
2.
Bone Rep ; 21: 101763, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38666049

RESUMEN

Acid transport is required for bone synthesis by osteoblasts. The osteoblast basolateral surface extrudes acid by Na+/H+ exchange, but apical proton uptake is undefined. We found high expression of the Cl-/H+ exchanger ClC3 at the bone apical surface. In mammals ClC3 functions in intracellular vesicular chloride transport, but when we found Cl- dependency of H+ transport in osteoblast membranes, we queried whether ClC3 Cl-/H+ exchange functions in bone formation. We used ClC3 knockout animals, and closely-related ClC5 knockout animals: In vitro studies suggested that both ClC3 and ClC5 might support bone formation. Genotypes were confirmed by total exon sequences. Expression of ClC3, and to a lesser extent of ClC5, at osteoblast apical membranes was demonstrated by fluorescent antibody labeling and electron microscopy with nanometer gold labeling. Animals with ClC3 or ClC5 knockouts were viable. In ClC3 or ClC5 knockouts, bone formation decreased ~40 % by calcein and xylenol orange labeling in vivo. In very sensitive micro-computed tomography, ClC5 knockout reduced bone relative to wild type, consistent with effects of ClC3 knockout, but varied with specific histological parameters. Regrettably, ClC5-ClC3 double knockouts are not viable, suggesting that ClC3 or ClC5 activity are essential to life. We conclude that ClC3 has a direct role in bone formation with overlapping but probably slightly smaller effects of ClC5. The mechanism in mineral formation might include ClC H+ uptake, in contrast to ClC3 and ClC5 function in cell vesicles or other organs.

3.
Am J Physiol Cell Physiol ; 326(3): C843-C849, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38223929

RESUMEN

The phosphodiesterase enzymes mediate calcium-phosphate deposition in various tissues, although which enzymes are active in bone mineralization is unclear. Using gene array analysis, we found that a member of ecto-nucleotide pyrophosphatase/phosphodiesterase family, ENPP2, was strongly down-regulated with age in stromal stem cells that produce osteoblasts and make bone. This is in keeping with reduced bone formation in older animals. Thus, we hypothesized that ENPP2 is, at least in part, an early mediator of bone formation and thus may reflect reduced bone formation with age. Since ENPP2 has not previously been shown to have a role in osteoblast differentiation, we studied its effect on bone differentiation from stromal stem cells, verified by flow cytometry for stem cell antigens. In these remarkably uniform osteoblast precursors, we did transfection with ENPP2 DsiRNA, scrambled DsiRNA, or no transfection to make cells with normal or greatly reduced ENPP2 and analyzed osteoblast differentiation and mineralization. Osteoblast differentiation down-regulation was shown by alizarin red binding, silver staining, and alkaline phosphatase activity. Differences were confirmed by real-time PCR for alkaline phosphatase (ALPL), osteocalcin (BGLAP), and ENPP2 and by Western Blot for Enpp2. These were decreased, ∼50%, in osteoblasts transfected with ENPP2 DsiRNA compared with cells transfected with a scrambled DsiRNA or not transfected (control) cells. This finding is the first evidence for the role of ENPP2 in osteoblast differentiation and mineralization.NEW & NOTEWORTHY We report the discovery that the ecto-nucleotide pyrophosphatase/phosphodiesterase, ENPP2, is an important regulator of early differentiation of bone-forming osteoblasts.


Asunto(s)
Calcinosis , Osteogénesis , Pirofosfatasas , Animales , Fosfatasa Alcalina/genética , Diferenciación Celular , Hidrolasas Diéster Fosfóricas/genética
4.
J Cell Biochem ; 124(12): 1889-1899, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37991446

RESUMEN

We review unique properties of bone formation including current understanding of mechanisms of bone mineral transport. We focus on formation only; mechanism of bone degradation is a separate topic not considered. Bone matrix is compared to other connective tissues composed mainly of the same proteins, but without the specialized mechanism for continuous transport and deposition of mineral. Indeed other connective tissues add mechanisms to prevent mineral formation. We start with the epithelial-like surfaces that mediate transport of phosphate to be incorporated into hydroxyapatite in bone, or in its ancestral tissue, the tooth. These include several phosphate producing or phosphate transport-related proteins with special expression in large quantities in bone, particularly in the bone-surface osteoblasts. In all connective tissues including bone, the proteins that constitute the protein matrix are mainly type I collagen and γ-carboxylate-containing small proteins in similar molar quantities to collagen. Specialized proteins that regulate connective tissue structure and formation are surprisingly similar in mineralized and non-mineralized tissues. While serum calcium and phosphate are adequate to precipitate mineral, specialized mechanisms normally prevent mineral formation except in bone, where continuous transport and deposition of mineral occurs.


Asunto(s)
Calcificación Fisiológica , Osteogénesis , Calcificación Fisiológica/fisiología , Huesos/metabolismo , Colágeno/metabolismo , Osteoblastos/metabolismo , Durapatita
5.
Mol Genet Metab Rep ; 36: 100996, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37588420

RESUMEN

Pathophysiology of osteopenia in phenylalanine hydroxylase (PAH) deficient phenylketonuria (PKU) is poorly characterized. The Pahenu2 mouse is universally osteopenic where dietary phenylalanine (Phe) management with amino acid defined chow does not improve bone density. We previously demonstrated Pahenu2 osteopenia owes to a skeletal stem cell (SSC) developmental deficit mediated by energy dysregulation and oxidative stress. This investigation demonstrates complexity of Pahenu2 SSC energy dysregulation. Creatine use by bone tissue is recognized. In vitro Pahenu2 SSCs in osteoblast differentiation respond to creatine with increased in situ alkaline phosphatase activity and increased intracellular ATP content. Animal studies applied a 60-day creatine regimen to Pahenu2 and control cohorts. Control cohorts include unaffected littermates (wt/wt), Pahenu2 receiving no intervention, and dietary Phe restricted Pahenu2. Experimental cohorts (Phe unrestricted Pahenu2, Phe restricted Pahenu2) were provided 1% creatine ad libitum in water. After 60 days, microcomputed tomography assessed bone metrics. Equivalent osteopenia occurs in Phe-restricted and untreated Pahenu2 control cohorts. In Phe unrestricted Pahenu2, creatine was without effect as bone density remained equivalent to Pahenu2 control cohorts. Alternatively, Phe-restricted Pahenu2 receiving creatine present increased bone density. We hypothesize small molecule dysregulation in untreated Pahenu2 disallows creatine utilization; therefore, osteopenia persisted. Dietary Phe restriction enables creatine utilization to enhance SSC osteoblast differentiation and improve in vivo bone density. PKU intervention singularly focused on Phe reduction enables residual disease including osteopenia and neurologic elements. Intervention concurrently addressing Phe homeostasis and energy dysregulation will improve disease elements refractory to standard of care Phe reduction mono-therapy.

6.
Am J Physiol Cell Physiol ; 325(3): C613-C622, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37519232

RESUMEN

We studied osteoblast bone mineral transport and matrix proteins as a function of age. In isolated bone marrow cells from long bones of young (3 or 4 mo) and old (18 or 19 mo) mice, age correlated with reduced mRNA of mineral transport proteins: alkaline phosphatase (ALP), ankylosis (ANK), the Cl-/H+ exchanger ClC3, and matrix proteins collagen 1 (Col1) and osteocalcin (BGLAP). Some proteins, including the neutral phosphate transporter2 (NPT2), were not reduced. These are predominately osteoblast proteins, but in mixed cell populations. Remarkably, in osteoblasts differentiated from preparations of stromal stem cells (SSCs) made from bone marrow cells in young and old mice, differentiated in vitro on perforated polyethylene terephthalate membranes, mRNA confirmed decreased expression with age for most transport-related and bone matrix proteins. Additional mRNAs in osteoblasts in vitro included ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), unchanged, and ENPP2, reduced with age. Decrease with age in ALP activity and protein by Western blot was also significant. Transport protein findings correlated with micro-computed tomography of lumbar vertebra, showing that trabecular bone of old mice is osteopenic relative to young mice, consistent with other studies. Pathway analysis of osteoblasts differentiated in vitro showed that cells from old animals had reduced Erk1/2 phosphorylation and decreased suppressor of mothers against decapentaplegic 2 (Smad2) mRNA, consistent with TGFß pathway, and reduced ß-catenin mRNA, consistent with WNT pathway regulation. Our results show that decline in bone density with age reflects selective changes, resulting effectively in a phenotype modification. Reduction of matrix and mineral transport protein expression with age is regulated by multiple signaling pathways.NEW & NOTEWORTHY This work for the first time showed that specific enzymes in bone mineral transport, and matrix synthesis proteins, in the epithelial-like bone-forming cell layer are downregulated with aging. Results were compared using cells extracted from long bones of young and old mice, or in essentially uniform osteoblasts differentiated from stromal stem cells in vitro. The age effect showed memory in the stromal stem cells, a remarkable finding.


Asunto(s)
Matriz Ósea , Osteoblastos , Ratones , Animales , Matriz Ósea/metabolismo , Microtomografía por Rayos X , Osteoblastos/metabolismo , Diferenciación Celular , Vía de Señalización Wnt , Minerales/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Portadoras/metabolismo , Células Madre/metabolismo , Células Cultivadas
7.
PLoS One ; 18(5): e0264596, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37167218

RESUMEN

The calcium-selective ion channel Orai1 has a complex role in bone homeostasis, with defects in both bone production and resorption detected in Orai1 germline knock-out mice. To determine whether Orai1 has a direct, cell-intrinsic role in osteoblast differentiation and function, we bred Orai1 flox/flox (Orai1fl/fl) mice with Runx2-cre mice to eliminate its expression in osteoprogenitor cells. Interestingly, Orai1 was expressed in a mosaic pattern in Orai1fl/fl-Runx2-cre bone. Specifically, antibody labeling for Orai1 in vertebral sections was uniform in wild type animals, but patchy regions in Orai1fl/fl-Runx2-cre bone revealed Orai1 loss while in other areas expression persisted. Nevertheless, by micro-CT, bones from Orai1fl/fl-Runx2-cre mice showed reduced bone mass overall, with impaired bone formation identified by dynamic histomorphometry. Cortical surfaces of Orai1fl/fl-Runx2-cre vertebrae however exhibited patchy defects. In cell culture, Orai1-negative osteoblasts showed profound reductions in store-operated Ca2+ entry, exhibited greatly decreased alkaline phosphatase activity, and had markedly impaired substrate mineralization. We conclude that defective bone formation observed in the absence of Orai1 reflects an intrinsic role for Orai1 in differentiating osteoblasts.


Asunto(s)
Canales de Calcio , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Osteoblastos , Animales , Ratones , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Ratones Noqueados , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Osteoblastos/metabolismo
8.
JIMD Rep ; 63(5): 446-452, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36101821

RESUMEN

Osteopenia is an under-investigated clinical presentation of phenylalanine hydroxylase (PAH)-deficient phenylketonuria (PKU). While osteopenia is not fully penetrant in human PKU, the Pahenu2 mouse is universally osteopenic and ideal to study the phenotype. We determined Pahenu2 mesenchymal stem cells (MSCs) are developmentally impaired in the osteoblast lineage. Moreover, we determined energy dysregulation and oxidative stress contribute to the osteoblast developmental deficit. The MSC preferred substrate glutamine (Gln) was applied to enhance energy homeostasis. In vitro Pahenu2 MSCs, in the context of 1200 µM Phe, respond to Gln with increased in situ alkaline phosphatase activity indicating augmented osteoblast differentiation. Oximetry applied to Pahenu2 MSCs in osteoblast differentiation show Gln energy substrate increases oxygen consumption, specifically maximum respiration and respiratory reserve. For 60 days post-weaning, Pahenu2 animals received either no intervention (standard lab chow), amino acid defined chow maintaining plasma Phe at ~200 µM, or standard lab chow where ad libitum water was a 2% Gln solution. Bone density was assessed by microcomputed tomography and bone growth assessed by dye labeling. Bone density and dye labeling in Phe-restricted Pahenu2 was indistinguishable from untreated Pahenu2. Gln energy substrate provided to Pahenu2, in the context of uncontrolled hyperphenylalaninemia, present increased bone density and dye labeling. These data provide further evidence that Pahenu2 MSCs experience a secondary energy deficit that is responsive both in vitro and in vivo to Gln energy substrate and independent of hyperphenylalaninemia. Energy support may have effect to treat human PKU osteopenia and elements of PKU neurologic disease resistant to standard of care systemic Phe reduction. Glutamine energy substrate anaplerosis increased Pahenu2 bone density and improved in vitro MSC function in the context of hyperphenylalaninemia in the classical PKU range.

9.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35563223

RESUMEN

In the present study, we studied the effect of apolipoprotein A-1 (APOA1) on the spatial and molecular characteristics of bone marrow adipocytes, using well-characterized ApoA1 knockout mice. APOA1 is a central regulator of high-density lipoprotein cholesterol (HDL-C) metabolism, and thus HDL; our recent work showed that deficiency of APOA1 increases bone marrow adiposity in mice. We found that ApoA1 deficient mice have greatly elevated adipocytes within their bone marrow compared to wild type counterparts. Morphologically, the increased adipocytes were similar to white adipocytes, and displayed proximal tibial-end localization. Marrow adipocytes from wild type mice were significantly fewer and did not display a bone-end distribution pattern. The mRNA levels of the brown/beige adipocyte-specific markers Ucp1, Dio2, Pat2, and Pgc1a; and the expression of leptin were greatly reduced in the ApoA1 knock-out in comparison to the wild-type mice. In the knock-out mice, adiponectin was remarkably elevated. In keeping with the close ties of hematopoietic stem cells and marrow adipocytes, using flow cytometry we found that the elevated adiposity in the ApoA1 knockout mice is associated with a significant reduction in the compartments of hematopoietic stem cells and common myeloid, but not of the common lymphoid, progenitors. Moreover, the 'beiging'-related marker osteopontin and the angiogenic factor VEGF were also reduced in the ApoA1 knock-out mice, further supporting the notion that APOA1-and most probably HDL-C-regulate bone marrow microenvironment, favoring beige/brown adipocyte characteristics.


Asunto(s)
Adipocitos Beige , Apolipoproteína A-I , Adipocitos Beige/metabolismo , Adipocitos Blancos/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Médula Ósea/metabolismo , Ratones , Ratones Noqueados , Obesidad/metabolismo
10.
Mol Genet Metab ; 136(2): 111-117, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35379539

RESUMEN

Phenylalanine hydroxylase (PAH) deficient phenylketonuria (PKU) is rightfully considered the paradigm treatable metabolic disease. Dietary substrate restriction (i.e. phenylalanine (Phe) restriction) was applied >60 years ago and remains the primary PKU management means. The traditional model of PKU neuropathophysiology dictates blood Phe over-representation directs asymmetric blood:brain barrier amino acid transport through the LAT1 transporter with subsequent increased cerebral Phe concentration and low concentrations of tyrosine (Tyr), tryptophan (Trp), leucine (Leu), valine (Val), and isoleucine (Ile). Low Tyr and Trp concentrations generate secondary serotonergic and dopaminergic neurotransmitter paucities, widely attributed as drivers of PKU neurologic phenotypes. White matter disease, a central PKU characteristic, is ascribed to Phe-mediated tissue toxicity. Impaired cerebral protein synthesis, by reduced concentrations of non-Phe large neutral amino acids, is another cited pathological mechanism. The PKU amino acid transport model suggests Phe management should be more efficacious than is realized, as even early identified, continuously treated patients that retain therapy compliance into adulthood, demonstrate neurologic disease elements. Reduced cerebral metabolism was an early-recognized element of PKU pathology. Legacy data (late 1960's to mid-1970's) determined the Phe catabolite phenylpyruvate inhibits mitochondrial pyruvate transport. Respirometry of Pahenu2 cerebral mitochondria have attenuated respiratory chain complex 1 induction in response to pyruvate substrate, indicating reduced energy metabolism. Oxidative stress is intrinsic to PKU and Pahenu2 brain tissue presents increased reactive oxygen species. Phenylpyruvate inhibits glucose-6-phosphate dehydrogenase that generates reduced niacinamide adenine dinucleotide phosphate the obligatory cofactor of glutathione reductase. Pahenu2 brain tissue metabolomics identified increased oxidized glutathione and glutathione disulfide. Over-represented glutathione disulfide argues for reduced glutathione reductase activity secondary to reduced NADPH. Herein, we review evidence of energy and oxidative stress involvement in PKU pathology. Data suggests energy deficit and oxidative stress are features of PKU pathophysiology, providing intervention-amenable therapeutic targets to ameliorate disease elements refractory to standard of care.


Asunto(s)
Fenilalanina Hidroxilasa , Fenilcetonurias , Adulto , Disulfuro de Glutatión/metabolismo , Glutatión Reductasa/metabolismo , Humanos , Estrés Oxidativo , Fenilalanina , Fenilalanina Hidroxilasa/genética , Fenilcetonurias/genética , Piruvatos , Tirosina/metabolismo
11.
Biochem Biophys Res Commun ; 580: 14-19, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34607258

RESUMEN

Osteoblasts in vivo form an epithelial-like layer with tight junctions between cells. Bone formation involves mineral transport into the matrix and acid transport to balance pH levels. To study the importance of the pH gradient in vitro, we used Transwell inserts composed of polyethylene terephthalate (PET) membranes with 0.4 µm pores at a density of (2 ± 0.4) x 106 pores per cm2. Mesenchymal stem cells (MSCs) prepared from murine bone marrow were used to investigate alternative conditions whereby osteoblast differentiation would better emulate in vivo bone development. MSCs were characterized by flow cytometry with more than 90% CD44 and 75% Sca-1 labeling. Mineralization was validated with paracellular alkaline phosphatase activity, collagen birefringence, and mineral deposition confirming MSCs identity. We demonstrate that MSCs cultured and differentiated on PET inserts form an epithelial-like layer while mineralizing. Measurement of the transepithelial resistance was ∼1400 Ω•cm2 at three weeks of differentiation. The pH value of the media above and under the cells were measured while cells were in proliferation and differentiation. In mineralizing cells, a difference of 0.145 pH unit was observed between the medium above and under the cells indicating a transepithelial gradient. A significant difference in pH units was observed between the medium above and below the cells in proliferation compared to differentiation. Data on pH below membranes were confirmed by pH-dependent SNARF1 fluorescence. Control cells in proliferative medium did not form an epithelial-like layer, displayed low transepithelial resistance, and there was no significant pH gradient. By transmission electron microscopy, membrane attached osteoblasts in vitro had abundant mitochondria consistent with active transport that occurs in vivo by surface osteoblasts. In keeping with osteoblastic differentiation, scanning electron microscopy identified deposition of extracellular collagen surrounded by hydroxyapatite. This in vitro model is a major advancement in modeling bone in vivo for understanding of osteoblast bone matrix production.


Asunto(s)
Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Animales , Calcificación Fisiológica , Proliferación Celular , Células Cultivadas , Células Epiteliales/citología , Concentración de Iones de Hidrógeno , Membranas Artificiales , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Osteogénesis , Tereftalatos Polietilenos/química
12.
PLoS One ; 16(9): e0249442, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34478449

RESUMEN

We previously demonstrated that exposure of adult mice to environmental levels of cadmium (Cd) alters immune cell development and function with increases in anti-streptococcal antibody levels, as well as decreases in splenic natural regulatory T cells (nTreg) in the adult female offspring. Based on these data, we hypothesized that prenatal Cd exposure could predispose an individual to developing autoimmunity as adults. To test this hypothesis, the effects of prenatal Cd on the development of autoimmune diabetes and arthritis were investigated. Non-obese diabetic (NOD) mice were exposed to Cd in a manner identical to our previous studies, and the onset of diabetes was assessed in the offspring. Our results showed a similar time-to-onset and severity of disease to historical data, and there were no statistical differences between Cd-exposed and control offspring. Numerous other immune parameters were measured and none of these parameters showed biologically-relevant differences between Cd-exposed and control animals. To test whether prenatal Cd-exposure affected development of autoimmune arthritis, we used SKG mice. While the levels of arthritis were similar between Cd-exposed and control offspring of both sexes, the pathology of arthritis determined by micro-computed tomography (µCT) between Cd-exposed and control animals, showed some statistically different values, especially in the female offspring. However, the differences were small and thus, the biological significance of these changes is open to speculation. Overall, based on the results from two autoimmune models, we conclude that prenatal exposure to Cd did not lead to a measurable propensity to develop autoimmune disease later in life.


Asunto(s)
Autoinmunidad/efectos de los fármacos , Cadmio/toxicidad , Diabetes Mellitus Tipo 1/etiología , Efectos Tardíos de la Exposición Prenatal , Animales , Artritis/diagnóstico por imagen , Artritis/epidemiología , Artritis/etiología , Autoinmunidad/fisiología , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/inducido químicamente , Diabetes Mellitus Tipo 1/epidemiología , Femenino , Fémur/diagnóstico por imagen , Incidencia , Masculino , Ratones Endogámicos NOD , Embarazo , Bazo/citología , Microtomografía por Rayos X
13.
Organogenesis ; 17(3-4): 50-55, 2021 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-34432558

RESUMEN

Osteopenia is common in phenylalanine hydroxylase deficient phenylketonuria (PKU). PKU is managed by limiting dietary phenylalanine. Osteopenia in PKU might reflect a therapeutic diet, with reduced bone forming materials. However, osteopenia occurs in patients who never received dietary therapy or following short-term therapy. Humans and animal studies find no correlation between bone loss, plasma hyperphenylalaninemia, bone formation, and resorption markers. Work in the Pahenu2 mouse recently showed a mesenchymal stem cell (MSC) developmental defect in the osteoblast pathway. Specifically, Pahenu2 MSCs are affected by energy dysregulation and oxidative stress. In PKU, MSCs oximetry and respirometry show mitochondrial respiratory-chain complex 1 deficit and over-representation of superoxide, producing reactive oxygen species affecting mitochondrial function. Similar mechanisms are involved in aging bone and other rare defects including alkaptonuria and homocysteinemia. Novel interventions to support energy and reduce oxidative stress may restore bone formation PKU patients, and in metabolic diseases with related mechanisms.


Asunto(s)
Enfermedades Óseas Metabólicas , Fenilalanina Hidroxilasa , Fenilcetonurias , Animales , Enfermedades Óseas Metabólicas/etiología , Modelos Animales de Enfermedad , Humanos , Ratones , Fenilalanina , Fenilalanina Hidroxilasa/deficiencia , Fenilcetonurias/complicaciones , Fenilcetonurias/tratamiento farmacológico
14.
Clin Transl Immunology ; 10(6): e1304, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34194748

RESUMEN

OBJECTIVES: Very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is a disorder of fatty acid oxidation. Symptoms are managed by dietary supplementation with medium-chain fatty acids that bypass the metabolic block. However, patients remain vulnerable to hospitalisations because of rhabdomyolysis, suggesting pathologic processes other than energy deficit. Since rhabdomyolysis is a self-destructive process that can signal inflammatory/immune cascades, we tested the hypothesis that inflammation is a physiologic dimension of VLCADD. METHODS: All subjects (n = 18) underwent informed consent/assent. Plasma cytokine and cytometry analyses were performed. A prospective case analysis was carried out on a patient with recurrent hospitalisation. Health data were extracted from patient medical records. RESULTS: Patients showed systemic upregulation of nine inflammatory mediators during symptomatic and asymptomatic periods. There was also overall abundance of immune cells with high intracellular expression of IFNγ, IL-6, MIP-1ß (CCL4) and TNFα, and the transcription factors p65-NFκB and STAT1 linked to inflammatory pathways. A case analysis of a patient exhibited already elevated plasma cytokine levels during diagnosis in early infancy, evolving into sustained high systemic levels during recurrent rhabdomyolysis-related hospitalisations. There were corresponding activated leukocytes, with higher intracellular stores of inflammatory molecules in monocytes compared to T cells. Exposure of monocytes to long-chain free fatty acids recapitulated the cytokine signature of patients. CONCLUSION: Pervasive plasma cytokine upregulation and pre-activated immune cells indicate chronic inflammatory state in VLCADD. Thus, there is rationale for practical implementation of clinical assessment of inflammation and/or translational testing, or adoption, of anti-inflammatory intervention(s) for personalised disease management.

15.
FASEB J ; 35(6): e21653, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34009685

RESUMEN

To determine the intrinsic role of Orai1 in osteoclast development, Orai1-floxed mice were bred with LysMcre mice to delete Orai1 from the myeloid lineage. PCR, in situ labelling and Western analysis showed Orai1 deletion in myeloid-lineage cells, including osteoclasts, as expected. Surprisingly, bone resorption was maintained in vivo, despite loss of multinucleated osteoclasts; instead, a large number of mononuclear cells bearing tartrate resistant acid phosphatase were observed on cell surfaces. An in vitro resorption assay confirmed that RANKL-treated Orai1 null cells, also TRAP-positive but mononuclear, degraded matrix, albeit at a reduced rate compared to wild type osteoclasts. This shows that mononuclear osteoclasts can degrade bone, albeit less efficiently. Further unexpected findings included that Orai1fl/fl -LysMcre vertebrae showed slightly reduced bone density in 16-week-old mice, despite Orai1 deletion only in myeloid cells; however, this mild difference resolved with age. In summary, in vitro analysis showed a severe defect in osteoclast multinucleation in Orai1 negative mononuclear cells, consistent with prior studies using less targeted strategies, but with evidence of resorption in vivo and unexpected secondary effects on bone formation leaving bone mass largely unaffected.


Asunto(s)
Desarrollo Óseo , Calcio/metabolismo , Diferenciación Celular , Proteína ORAI1/fisiología , Osteoclastos/citología , Fosfatasa Ácida Tartratorresistente/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoclastos/metabolismo
16.
Mol Genet Metab ; 132(3): 173-179, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33602601

RESUMEN

Osteopenia occurs in a subset of phenylalanine hydroxylase (PAH) deficient phenylketonuria (PKU) patients. While osteopenia is not fully penetrant in patients, the Pahenu2 classical PKU mouse is universally osteopenic, making it an ideal model of the phenotype. Pahenu2 Phe management, with a Phe-fee amino acid defined diet, does not improve bone density as histomorphometry metrics remain indistinguishable from untreated animals. Previously, we demonstrated Pahenu2 mesenchymal stem cells (MSCs) display impaired osteoblast differentiation. Oxidative stress is recognized in PKU patients and PKU animal models. Pahenu2 MSCs experience oxidative stress determined by intracellular superoxide over-representation. The deleterious impact of oxidative stress on mitochondria is recognized. Oximetry applied to Pahenu2 MSCs identified mitochondrial stress by increased basal respiration with concurrently reduced maximal respiration and respiratory reserve. Proton leak secondary to mitochondrial complex 1 dysfunction is a recognized superoxide source. Respirometry applied to Pahenu2 MSCs, in the course of osteoblast differentiation, identified a partial complex 1 deficit. Pahenu2 MSCs treated with the antioxidant resveratrol demonstrated increased mitochondrial mass by MitoTracker green labeling. In hyperphenylalaninemic conditions, resveratrol increased in situ alkaline phosphatase activity suggesting partial recovery of Pahenu2 MSCs osteoblast differentiation. Up-regulation of oxidative energy production is required for osteoblasts differentiation. Our data suggests impaired Pahenu2 MSC developmental competence involves an energy deficit. We posit energy support and oxidative stress reduction will enable Pahenu2 MSC differentiation in the osteoblast lineage to subsequently increase bone density.


Asunto(s)
Enfermedades Óseas Metabólicas/genética , Estrés Oxidativo/genética , Fenilalanina Hidroxilasa/genética , Fenilcetonurias/genética , Fosfatasa Alcalina/genética , Animales , Densidad Ósea/genética , Enfermedades Óseas Metabólicas/complicaciones , Enfermedades Óseas Metabólicas/tratamiento farmacológico , Enfermedades Óseas Metabólicas/patología , Diferenciación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Fenilalanina/genética , Fenilcetonurias/complicaciones , Fenilcetonurias/tratamiento farmacológico , Fenilcetonurias/patología , Resveratrol/farmacología
17.
Elife ; 102021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33480844

RESUMEN

Osteocalcin is a bone matrix protein that acts like a hormone when it reaches the blood, and has different effects in mice and humans.


Asunto(s)
Hormonas , Animales , Glicosilación , Ratones , Osteocalcina/genética , Osteocalcina/metabolismo
18.
Bone ; 141: 115621, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32858255

RESUMEN

Three physiologically mineralizing tissues - teeth, cartilage and bone - have critical common elements and important evolutionary relationships. Phylogenetically the most ancient densely mineralized tissue is teeth. In jawless fishes without skeletons, tooth formation included epithelial transport of phosphates, a process echoed later in bone physiology. Cartilage and mineralized cartilage are skeletal elements separate from bone, but with metabolic features common to bone. Cartilage mineralization is coordinated with high expression of tissue nonspecific alkaline phosphatase and PHOSPHO1 to harvest available phosphate esters and support mineralization of collagen secreted locally. Mineralization in true bone results from stochastic nucleation of hydroxyapatite crystals within the cross-linked collagen fibrils. Mineral accumulation in dense collagen is, at least in major part, mediated by amorphous aggregates - often called Posner clusters - of calcium and phosphate that are small enough to diffuse into collagen fibrils. Mineral accumulation in membrane vesicles is widely suggested, but does not correlate with a definitive stage of mineralization. Conversely mineral deposition at non-physiologic sites where calcium and phosphate are adequate has been shown to be regulated in large part by pyrophosphate. All of these elements are present in vertebrate bone metabolism. A key biological element of bone formation is an epithelial-like cellular organization which allows control of phosphate, calcium and pH during mineralization.


Asunto(s)
Huesos , Calcificación Fisiológica , Minerales , Osteogénesis , Filogenia
19.
J Agric Food Chem ; 68(37): 9993-10002, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32838526

RESUMEN

We investigated the effect of a phytoestrogen, (3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol (DPHD), from Curcuma comosa Roxb. (Zingiberaceae family) on the adipogenic differentiation of mesenchymal progenitors, human bone marrow-derived mesenchymal stem cells (hBMSCs). DPHD inhibited adipocyte differentiation of hBMSCs by suppressing the expression of genes involved in adipogenesis. DPHD at concentrations of 0.1, 1, and 10 µM significantly decreased triglyceride accumulation in hBMSCs to 7.1 ± 0.2, 6.3 ± 0.4, and 4.9 ± 0.2 mg/dL, respectively, compared to the nontreated control (10.1 ± 0.9 mg/dL) (p < 0.01). Based on gene expression profiling, DPHD increased the expression of several genes involved in the Wnt/ß-catenin signaling pathway, a negative regulator of adipocyte differentiation in hBMSCs. DPHD also increased the levels of essential signaling proteins which are extracellular signal-regulated kinases 1 and 2 (ERK1/2) and glycogen synthase kinase 3 beta (GSK-3ß) that link estrogen receptor (ER) signaling to Wnt/ß-catenin signaling. In conclusion, DPHD exhibited the anti-adipogenic effect in hBMSCs by suppression of adipogenic markers in hBMSCs through the activation of ER and Wnt/ß catenin signaling pathways. This finding suggests the potential role of DPHD in preventing bone marrow adiposity which is one of the major factors that exacerbates osteoporosis in postmenopause.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Curcuma/química , Diarilheptanoides/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Fitoestrógenos/farmacología , Extractos Vegetales/farmacología , Adipocitos/citología , Adipocitos/metabolismo , Médula Ósea/efectos de los fármacos , Médula Ósea/metabolismo , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Diferenciación Celular/efectos de los fármacos , Diarilheptanoides/química , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Fitoestrógenos/química , Extractos Vegetales/química , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Triglicéridos/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/metabolismo
20.
Proc Natl Acad Sci U S A ; 117(25): 14386-14394, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513693

RESUMEN

We report that two widely-used drugs for erectile dysfunction, tadalafil and vardenafil, trigger bone gain in mice through a combination of anabolic and antiresorptive actions on the skeleton. Both drugs were found to enhance osteoblastic bone formation in vivo using a unique gene footprint and to inhibit osteoclast formation. The target enzyme, phosphodiesterase 5A (PDE5A), was found to be expressed in mouse and human bone as well as in specific brain regions, namely the locus coeruleus, raphe pallidus, and paraventricular nucleus of the hypothalamus. Localization of PDE5A in sympathetic neurons was confirmed by coimmunolabeling with dopamine ß-hydroxylase, as well as by retrograde bone-brain tracing using a sympathetic nerve-specific pseudorabies virus, PRV152. Both drugs elicited an antianabolic sympathetic imprint in osteoblasts, but with net bone gain. Unlike in humans, in whom vardenafil is more potent than tadalafil, the relative potencies were reversed with respect to their osteoprotective actions in mice. Structural modeling revealed a higher binding energy of tadalafil to mouse PDE5A compared with vardenafil, due to steric clashes of vardenafil with a single methionine residue at position 806 in mouse PDE5A. Collectively, our findings suggest that a balance between peripheral and central actions of PDE5A inhibitors on bone formation together with their antiresorptive actions specify the osteoprotective action of PDE5A blockade.


Asunto(s)
Disfunción Eréctil/tratamiento farmacológico , Osteogénesis/efectos de los fármacos , Osteoporosis/tratamiento farmacológico , Inhibidores de Fosfodiesterasa 5/farmacología , Envejecimiento/fisiología , Animales , Densidad Ósea/efectos de los fármacos , Densidad Ósea/fisiología , Huesos/citología , Huesos/efectos de los fármacos , Huesos/metabolismo , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Diferenciación Celular/efectos de los fármacos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/química , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Reposicionamiento de Medicamentos , Disfunción Eréctil/complicaciones , Humanos , Masculino , Ratones , Persona de Mediana Edad , Modelos Animales , Modelos Moleculares , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/fisiología , Osteoclastos/efectos de los fármacos , Osteoclastos/fisiología , Osteoporosis/complicaciones , Fracturas Osteoporóticas/etiología , Fracturas Osteoporóticas/prevención & control , Inhibidores de Fosfodiesterasa 5/química , Inhibidores de Fosfodiesterasa 5/uso terapéutico , Cultivo Primario de Células , Tadalafilo/química , Tadalafilo/farmacología , Tadalafilo/uso terapéutico , Diclorhidrato de Vardenafil/química , Diclorhidrato de Vardenafil/farmacología , Diclorhidrato de Vardenafil/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...