Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35758651

RESUMEN

Hyperactivation of oncogenic pathways downstream of RAS and PI3K/AKT in normal cells induces a senescence-like phenotype that acts as a tumor-suppressive mechanism that must be overcome during transformation. We previously demonstrated that AKT-induced senescence (AIS) is associated with profound transcriptional and metabolic changes. Here, we demonstrate that human fibroblasts undergoing AIS display upregulated cystathionine-ß-synthase (CBS) expression and enhanced uptake of exogenous cysteine, which lead to increased hydrogen sulfide (H2S) and glutathione (GSH) production, consequently protecting senescent cells from oxidative stress-induced cell death. CBS depletion allows AIS cells to escape senescence and re-enter the cell cycle, indicating the importance of CBS activity in maintaining AIS. Mechanistically, we show this restoration of proliferation is mediated through suppressing mitochondrial respiration and reactive oxygen species (ROS) production by reducing mitochondrial localized CBS while retaining antioxidant capacity of transsulfuration pathway. These findings implicate a potential tumor-suppressive role for CBS in cells with aberrant PI3K/AKT pathway activation. Consistent with this concept, in human gastric cancer cells with activated PI3K/AKT signaling, we demonstrate that CBS expression is suppressed due to promoter hypermethylation. CBS loss cooperates with activated PI3K/AKT signaling in promoting anchorage-independent growth of gastric epithelial cells, while CBS restoration suppresses the growth of gastric tumors in vivo. Taken together, we find that CBS is a novel regulator of AIS and a potential tumor suppressor in PI3K/AKT-driven gastric cancers, providing a new exploitable metabolic vulnerability in these cancers.


Asunto(s)
Sulfuro de Hidrógeno , Neoplasias Gástricas , Cistationina , Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Glutatión/metabolismo , Glucógeno Sintasa , Humanos , Sulfuro de Hidrógeno/metabolismo , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Neoplasias Gástricas/genética
2.
Mech Ageing Dev ; 187: 111229, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32171687

RESUMEN

Oncogene-induced senescence (OIS) is a powerful intrinsic tumor-suppressive mechanism, arresting cell cycle progression upon oncogene-activating genomic alterations. The discovery and characterization of the senescence-associated secretome unveiled a rich additional complexity to the senescence phenotype, including extrinsic impacts on the microenvironment and engagement of the immune response. Emerging evidence suggests that senescence phenotypes vary depending on the oncogenic stimulus. Therefore, understanding the mechanisms underlying OIS and how they are subverted in cancer will provide invaluable opportunities to identify alternative strategies for treating oncogene-driven cancers. In this review, we primarily discuss the key mechanisms governing OIS driven by the RAS/MAPK and PI3K/AKT pathways and how understanding the biology of senescent cells has uncovered new therapeutic possibilities to target cancer.


Asunto(s)
Envejecimiento/metabolismo , Senescencia Celular , Neoplasias/metabolismo , Oncogenes , Transducción de Señal , Microambiente Tumoral , Envejecimiento/genética , Envejecimiento/patología , Animales , Humanos , Neoplasias/genética , Neoplasias/patología
3.
Cell Death Differ ; 27(2): 725-741, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31285545

RESUMEN

Exquisite regulation of PI3K/AKT/mTORC1 signaling is essential for homeostatic control of cell growth, proliferation, and survival. Aberrant activation of this signaling network is an early driver of many sporadic human cancers. Paradoxically, sustained hyperactivation of the PI3K/AKT/mTORC1 pathway in nontransformed cells results in cellular senescence, which is a tumor-suppressive mechanism that must be overcome to promote malignant transformation. While oncogene-induced senescence (OIS) driven by excessive RAS/ERK signaling has been well studied, little is known about the mechanisms underpinning the AKT-induced senescence (AIS) response. Here, we utilize a combination of transcriptome and metabolic profiling to identify key signatures required to maintain AIS. We also employ a whole protein-coding genome RNAi screen for AIS escape, validating a subset of novel mediators and demonstrating their preferential specificity for AIS as compared with OIS. As proof of concept of the potential to exploit the AIS network, we show that neurofibromin 1 (NF1) is upregulated during AIS and its ability to suppress RAS/ERK signaling facilitates AIS maintenance. Furthermore, depletion of NF1 enhances transformation of p53-mutant epithelial cells expressing activated AKT, while its overexpression blocks transformation by inducing a senescent-like phenotype. Together, our findings reveal novel mechanistic insights into the control of AIS and identify putative senescence regulators that can potentially be targeted, with implications for new therapeutic options to treat PI3K/AKT/mTORC1-driven cancers.


Asunto(s)
Senescencia Celular/genética , Proteínas Proto-Oncogénicas c-akt/genética , Línea Celular , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Transducción de Señal/genética
4.
Biomed Res Int ; 2018: 3205125, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30050925

RESUMEN

Cystathionine ß-synthase (CBS) regulates homocysteine metabolism and contributes to hydrogen sulfide (H2S) biosynthesis through which it plays multifunctional roles in the regulation of cellular energetics, redox status, DNA methylation, and protein modification. Inactivating mutations in CBS contribute to the pathogenesis of the autosomal recessive disease CBS-deficient homocystinuria. Recent studies demonstrating that CBS promotes colon and ovarian cancer growth in preclinical models highlight a newly identified oncogenic role for CBS. On the contrary, tumor-suppressive effects of CBS have been reported in other cancer types, suggesting context-dependent roles of CBS in tumor growth and progression. Here, we review the physiological functions of CBS, summarize the complexities regarding CBS research in oncology, and discuss the potential of CBS and its key metabolites, including homocysteine and H2S, as potential biomarkers for cancer diagnosis or therapeutic targets for cancer treatment.


Asunto(s)
Carcinogénesis , Cistationina betasintasa/fisiología , Neoplasias , Colon/fisiología , Femenino , Humanos , Sulfuro de Hidrógeno , Ovario/fisiología , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA