Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
MAbs ; 16(1): 2316872, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38381460

RESUMEN

Therapeutic bioconjugates are emerging as an essential tool to combat human disease. Site-specific conjugation technologies are widely recognized as the optimal approach for producing homogeneous drug products. Non-natural amino acid (nnAA) incorporation allows the introduction of bioconjugation handles at genetically defined locations. Escherichia coli (E. coli) is a facile host for therapeutic nnAA protein synthesis because it can stably replicate plasmids encoding genes for product and nnAA incorporation. Here, we demonstrate that by engineering E. coli to incorporate high levels of nnAAs, it is feasible to produce nnAA-containing antibody fragments and full-length immunoglobulin Gs (IgGs) in the cytoplasm of E. coli. Using high-density fermentation, it was possible to produce both of these types of molecules with site-specifically incorporated nnAAs at titers > 1 g/L. We anticipate this strategy will help simplify the production and manufacture of promising antibody therapeutics.


Asunto(s)
Aminoácidos , Escherichia coli , Humanos , Aminoácidos/genética , Escherichia coli/genética , Fragmentos de Inmunoglobulinas , Anticuerpos/genética
2.
Appl Environ Microbiol ; 86(21)2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32826213

RESUMEN

With its ability to catabolize a wide variety of carbon sources and a growing engineering toolkit, Pseudomonas putida KT2440 is emerging as an important chassis organism for metabolic engineering. Despite advances in our understanding of the organism, many gaps remain in our knowledge of the genetic basis of its metabolic capabilities. The gaps are particularly noticeable in our understanding of both fatty acid and alcohol catabolism, where many paralogs putatively coding for similar enzymes coexist, making biochemical assignment via sequence homology difficult. To rapidly assign function to the enzymes responsible for these metabolisms, we leveraged random barcode transposon sequencing (RB-Tn-Seq). Global fitness analyses of transposon libraries grown on 13 fatty acids and 10 alcohols produced strong phenotypes for hundreds of genes. Fitness data from mutant pools grown on fatty acids of varying chain lengths indicated specific enzyme substrate preferences and enabled us to hypothesize that DUF1302/DUF1329 family proteins potentially function as esterases. From the data, we also postulate catabolic routes for the two biogasoline molecules isoprenol and isopentanol, which are catabolized via leucine metabolism after initial oxidation and activation with coenzyme A (CoA). Because fatty acids and alcohols may serve as both feedstocks and final products of metabolic-engineering efforts, the fitness data presented here will help guide future genomic modifications toward higher titers, rates, and yields.IMPORTANCE To engineer novel metabolic pathways into P. putida, a comprehensive understanding of the genetic basis of its versatile metabolism is essential. Here, we provide functional evidence for the putative roles of hundreds of genes involved in the fatty acid and alcohol metabolism of the bacterium. These data provide a framework facilitating precise genetic changes to prevent product degradation and to channel the flux of specific pathway intermediates as desired.


Asunto(s)
Alcoholes/metabolismo , Elementos Transponibles de ADN , ADN Bacteriano , Ácidos Grasos/metabolismo , Pseudomonas putida/metabolismo , Redes y Vías Metabólicas , Análisis de Secuencia de ADN
3.
Nat Commun ; 11(1): 2931, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32523014

RESUMEN

Despite intensive study, plant lysine catabolism beyond the 2-oxoadipate (2OA) intermediate remains unvalidated. Recently we described a missing step in the D-lysine catabolism of Pseudomonas putida in which 2OA is converted to D-2-hydroxyglutarate (2HG) via hydroxyglutarate synthase (HglS), a DUF1338 family protein. Here we solve the structure of HglS to 1.1 Å resolution in substrate-free form and in complex with 2OA. We propose a successive decarboxylation and intramolecular hydroxylation mechanism forming 2HG in a Fe(II)- and O2-dependent manner. Specificity is mediated by a single arginine, highly conserved across most DUF1338 proteins. An Arabidopsis thaliana HglS homolog coexpresses with known lysine catabolism enzymes, and mutants show phenotypes consistent with disrupted lysine catabolism. Structural and biochemical analysis of Oryza sativa homolog FLO7 reveals identical activity to HglS despite low sequence identity. Our results suggest DUF1338-containing enzymes catalyze the same biochemical reaction, exerting the same physiological function across bacteria and eukaryotes.


Asunto(s)
Hierro/metabolismo , Lisina/metabolismo , Oxigenasas/metabolismo , Arabidopsis/metabolismo , Oryza/metabolismo , Pseudomonas putida/metabolismo
4.
Metab Eng Commun ; 10: e00119, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32280587

RESUMEN

Pseudomonas putida is a saprophytic bacterium with robust metabolisms and strong solvent tolerance making it an attractive host for metabolic engineering and bioremediation. Due to its diverse carbon metabolisms, its genome encodes an array of proteins and enzymes that can be readily applied to produce valuable products. In this work we sought to identify design principles and bottlenecks in the production of type III polyketide synthase (T3PKS)-derived compounds in P. putida. T3PKS products are widely used as nutraceuticals and medicines and often require aromatic starter units, such as coumaroyl-CoA, which is also an intermediate in the native coumarate catabolic pathway of P. putida. Using a randomly barcoded transposon mutant (RB-TnSeq) library, we assayed gene functions for a large portion of aromatic catabolism, confirmed known pathways, and proposed new annotations for two aromatic transporters. The 1,3,6,8-tetrahydroxynapthalene synthase of Streptomyces coelicolor (RppA), a microbial T3PKS, was then used to rapidly assay growth conditions for increased T3PKS product accumulation. The feruloyl/coumaroyl CoA synthetase (Fcs) of P. putida was used to supply coumaroyl-CoA for the curcuminoid synthase (CUS) of Oryza sativa, a plant T3PKS. We identified that accumulation of coumaroyl-CoA in this pathway results in extended growth lag times in P. putida. Deletion of the second step in coumarate catabolism, the enoyl-CoA hydratase-lyase (Ech), resulted in increased production of the type III polyketide bisdemethoxycurcumin.

5.
J Am Chem Soc ; 142(2): 835-846, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31793780

RESUMEN

Terminal alkenes are easily derivatized, making them desirable functional group targets for polyketide synthase (PKS) engineering. However, they are rarely encountered in natural PKS systems. One mechanism for terminal alkene formation in PKSs is through the activity of an acyl-CoA dehydrogenase (ACAD). Herein, we use biochemical and structural analysis to understand the mechanism of terminal alkene formation catalyzed by an γ,δ-ACAD from the biosynthesis of the polyketide natural product FK506, TcsD. While TcsD is homologous to canonical α,ß-ACADs, it acts regioselectively at the γ,δ-position and only on α,ß-unsaturated substrates. Furthermore, this regioselectivity is controlled by a combination of bulky residues in the active site and a lateral shift in the positioning of the FAD cofactor within the enzyme. Substrate modeling suggests that TcsD utilizes a novel set of hydrogen bond donors for substrate activation and positioning, preventing dehydrogenation at the α,ß position of substrates. From the structural and biochemical characterization of TcsD, key residues that contribute to regioselectivity and are unique to the protein family were determined and used to identify other putative γ,δ-ACADs that belong to diverse natural product biosynthetic gene clusters. These predictions are supported by the demonstration that a phylogenetically distant homologue of TcsD also regioselectively oxidizes α,ß-unsaturated substrates. This work exemplifies a powerful approach to understand unique enzymatic reactions and will facilitate future enzyme discovery, inform enzyme engineering, and aid natural product characterization efforts.


Asunto(s)
Acil-CoA Deshidrogenasa/química , Bacterias/enzimología , Conformación Proteica
6.
Metab Eng Commun ; 9: e00098, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31720214

RESUMEN

Pseudomonas putida is a promising bacterial chassis for metabolic engineering given its ability to metabolize a wide array of carbon sources, especially aromatic compounds derived from lignin. However, this omnivorous metabolism can also be a hindrance when it can naturally metabolize products produced from engineered pathways. Herein we show that P. putida is able to use valerolactam as a sole carbon source, as well as degrade caprolactam. Lactams represent important nylon precursors, and are produced in quantities exceeding one million tons per year (Zhang et al., 2017). To better understand this metabolism we use a combination of Random Barcode Transposon Sequencing (RB-TnSeq) and shotgun proteomics to identify the oplBA locus as the likely responsible amide hydrolase that initiates valerolactam catabolism. Deletion of the oplBA genes prevented P. putida from growing on valerolactam, prevented the degradation of valerolactam in rich media, and dramatically reduced caprolactam degradation under the same conditions. Deletion of oplBA, as well as pathways that compete for precursors L-lysine or 5-aminovalerate, increased the titer of valerolactam from undetectable after 48 h of production to ~90 mg/L. This work may serve as a template to rapidly eliminate undesirable metabolism in non-model hosts in future metabolic engineering efforts.

7.
ACS Synth Biol ; 8(10): 2385-2396, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31518500

RESUMEN

A significant bottleneck in synthetic biology involves screening large genetically encoded libraries for desirable phenotypes such as chemical production. However, transcription factor-based biosensors can be leveraged to screen thousands of genetic designs for optimal chemical production in engineered microbes. In this study we characterize two glutarate sensing transcription factors (CsiR and GcdR) from Pseudomonas putida. The genomic contexts of csiR homologues were analyzed, and their DNA binding sites were bioinformatically predicted. Both CsiR and GcdR were purified and shown to bind upstream of their coding sequencing in vitro. CsiR was shown to dissociate from DNA in vitro when exogenous glutarate was added, confirming that it acts as a genetic repressor. Both transcription factors and cognate promoters were then cloned into broad host range vectors to create two glutarate biosensors. Their respective sensing performance features were characterized, and more sensitive derivatives of the GcdR biosensor were created by manipulating the expression of the transcription factor. Sensor vectors were then reintroduced into P. putida and evaluated for their ability to respond to glutarate and various lysine metabolites. Additionally, we developed a novel mathematical approach to describe the usable range of detection for genetically encoded biosensors, which may be broadly useful in future efforts to better characterize biosensor performance.


Asunto(s)
Glutaratos/metabolismo , Lisina/metabolismo , Pseudomonas putida/metabolismo , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ingeniería Metabólica/métodos , Regiones Promotoras Genéticas/genética , Pseudomonas putida/genética , Biología Sintética/métodos
8.
J Proteome Res ; 18(10): 3752-3761, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31436101

RESUMEN

Mass spectrometry-based quantitative proteomic analysis has proven valuable for clinical and biotechnology-related research and development. Improvements in sensitivity, resolution, and robustness of mass analyzers have also added value. However, manual sample preparation protocols are often a bottleneck for sample throughput and can lead to poor reproducibility, especially for applications where thousands of samples per month must be analyzed. To alleviate these issues, we developed a "cells-to-peptides" automated workflow for Gram-negative bacteria and fungi that includes cell lysis, protein precipitation, resuspension, quantification, normalization, and tryptic digestion. The workflow takes 2 h to process 96 samples from cell pellets to the initiation of the tryptic digestion step and can process 384 samples in parallel. We measured the efficiency of protein extraction from various amounts of cell biomass and optimized the process for standard liquid chromatography-mass spectrometry systems. The automated workflow was tested by preparing 96 Escherichia coli samples and quantifying over 600 peptides that resulted in a median coefficient of variation of 15.8%. Similar technical variance was observed for three other organisms as measured by highly multiplexed LC-MRM-MS acquisition methods. These results show that this automated sample preparation workflow provides robust, reproducible proteomic samples for high-throughput applications.


Asunto(s)
Células/química , Técnicas Microbiológicas/métodos , Péptidos/aislamiento & purificación , Proteómica/métodos , Manejo de Especímenes/métodos , Flujo de Trabajo , Automatización , Proteínas Bacterianas/análisis , Proteínas Bacterianas/aislamiento & purificación , Escherichia coli/química , Proteínas Fúngicas/análisis , Proteínas Fúngicas/aislamiento & purificación , Hongos/química , Bacterias Gramnegativas/química , Humanos , Péptidos/análisis , Manejo de Especímenes/normas
9.
mBio ; 10(3)2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31064836

RESUMEN

Despite intensive study for 50 years, the biochemical and genetic links between lysine metabolism and central metabolism in Pseudomonas putida remain unresolved. To establish these biochemical links, we leveraged random barcode transposon sequencing (RB-TnSeq), a genome-wide assay measuring the fitness of thousands of genes in parallel, to identify multiple novel enzymes in both l- and d-lysine metabolism. We first describe three pathway enzymes that catabolize l-2-aminoadipate (l-2AA) to 2-ketoglutarate (2KG), connecting d-lysine to the TCA cycle. One of these enzymes, P. putida 5260 (PP_5260), contains a DUF1338 domain, representing a family with no previously described biological function. Our work also identified the recently described coenzyme A (CoA)-independent route of l-lysine degradation that results in metabolization to succinate. We expanded on previous findings by demonstrating that glutarate hydroxylase CsiD is promiscuous in its 2-oxoacid selectivity. Proteomics of selected pathway enzymes revealed that expression of catabolic genes is highly sensitive to the presence of particular pathway metabolites, implying intensive local and global regulation. This work demonstrated the utility of RB-TnSeq for discovering novel metabolic pathways in even well-studied bacteria, as well as its utility a powerful tool for validating previous research.IMPORTANCEP. putida lysine metabolism can produce multiple commodity chemicals, conferring great biotechnological value. Despite much research, the connection of lysine catabolism to central metabolism in P. putida remained undefined. Here, we used random barcode transposon sequencing to fill the gaps of lysine metabolism in P. putida We describe a route of 2-oxoadipate (2OA) catabolism, which utilizes DUF1338-containing protein P. putida 5260 (PP_5260) in bacteria. Despite its prevalence in many domains of life, DUF1338-containing proteins have had no known biochemical function. We demonstrate that PP_5260 is a metalloenzyme which catalyzes an unusual route of decarboxylation of 2OA to d-2-hydroxyglutarate (d-2HG). Our screen also identified a recently described novel glutarate metabolic pathway. We validate previous results and expand the understanding of glutarate hydroxylase CsiD by showing that can it use either 2OA or 2KG as a cosubstrate. Our work demonstrated that biological novelty can be rapidly identified using unbiased experimental genetics and that RB-TnSeq can be used to rapidly validate previous results.


Asunto(s)
Aptitud Genética , Lisina/metabolismo , Pseudomonas putida/enzimología , Pseudomonas putida/genética , Redes y Vías Metabólicas
10.
Synth Syst Biotechnol ; 2(3): 147-166, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29318196

RESUMEN

Metabolic engineering efforts toward rewiring metabolism of cells to produce new compounds often require the utilization of non-native enzymatic machinery that is capable of producing a broad range of chemical functionalities. Polyketides encompass one of the largest classes of chemically diverse natural products. With thousands of known polyketides, modular polyketide synthases (PKSs) share a particularly attractive biosynthetic logic for generating chemical diversity. The engineering of modular PKSs could open access to the deliberate production of both existing and novel compounds. In this review, we discuss PKS engineering efforts applied at both the protein and cellular level for the generation of a diverse range of chemical structures, and we examine future applications of PKSs in the production of medicines, fuels and other industrially relevant chemicals.

11.
ACS Synth Biol ; 6(1): 159-166, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-27605473

RESUMEN

Streptomyces have a rich history as producers of important natural products and this genus of bacteria has recently garnered attention for its potential applications in the broader context of synthetic biology. However, the dearth of genetic tools available to control and monitor protein production precludes rapid and predictable metabolic engineering that is possible in hosts such as Escherichia coli or Saccharomyces cerevisiae. In an effort to improve genetic tools for Streptomyces venezuelae, we developed a suite of standardized, orthogonal integration vectors and an improved method to monitor protein production in this host. These tools were applied to characterize heterologous promoters and various attB chromosomal integration sites. A final study leveraged the characterized toolset to demonstrate its use in producing the biofuel precursor bisabolene using a chromosomally integrated expression system. These tools advance S. venezuelae to be a practical host for future metabolic engineering efforts.


Asunto(s)
Streptomyces/genética , Streptomyces/metabolismo , Biocombustibles , Genes Reporteros , Vectores Genéticos , Proteínas Luminiscentes/genética , Ingeniería Metabólica/métodos , Plásmidos/genética , Regiones Promotoras Genéticas , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Biología Sintética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...