Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mov Disord ; 39(1): 141-151, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37964426

RESUMEN

BACKGROUND: The ITPR1 gene encodes the inositol 1,4,5-trisphosphate (IP3 ) receptor type 1 (IP3 R1), a critical player in cerebellar intracellular calcium signaling. Pathogenic missense variants in ITPR1 cause congenital spinocerebellar ataxia type 29 (SCA29), Gillespie syndrome (GLSP), and severe pontine/cerebellar hypoplasia. The pathophysiological basis of the different phenotypes is poorly understood. OBJECTIVES: We aimed to identify novel SCA29 and GLSP cases to define core phenotypes, describe the spectrum of missense variation across ITPR1, standardize the ITPR1 variant nomenclature, and investigate disease progression in relation to cerebellar atrophy. METHODS: Cases were identified using next-generation sequencing through the Deciphering Developmental Disorders study, the 100,000 Genomes project, and clinical collaborations. ITPR1 alternative splicing in the human cerebellum was investigated by quantitative polymerase chain reaction. RESULTS: We report the largest, multinational case series of 46 patients with 28 unique ITPR1 missense variants. Variants clustered in functional domains of the protein, especially in the N-terminal IP3 -binding domain, the carbonic anhydrase 8 (CA8)-binding region, and the C-terminal transmembrane channel domain. Variants outside these domains were of questionable clinical significance. Standardized transcript annotation, based on our ITPR1 transcript expression data, greatly facilitated analysis. Genotype-phenotype associations were highly variable. Importantly, while cerebellar atrophy was common, cerebellar volume loss did not correlate with symptom progression. CONCLUSIONS: This dataset represents the largest cohort of patients with ITPR1 missense variants, expanding the clinical spectrum of SCA29 and GLSP. Standardized transcript annotation is essential for future reporting. Our findings will aid in diagnostic interpretation in the clinic and guide selection of variants for preclinical studies. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Aniridia , Anhidrasas Carbónicas , Ataxia Cerebelosa , Discapacidad Intelectual , Trastornos del Movimiento , Degeneraciones Espinocerebelosas , Humanos , Ataxia Cerebelosa/genética , Mutación Missense/genética , Trastornos del Movimiento/complicaciones , Atrofia , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética
2.
medRxiv ; 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37745552

RESUMEN

Background: Both promoters and untranslated regions (UTRs) have critical regulatory roles, yet variants in these regions are largely excluded from clinical genetic testing due to difficulty in interpreting pathogenicity. The extent to which these regions may harbour diagnoses for individuals with rare disease is currently unknown. Methods: We present a framework for the identification and annotation of potentially deleterious proximal promoter and UTR variants in known dominant disease genes. We use this framework to annotate de novo variants (DNVs) in 8,040 undiagnosed individuals in the Genomics England 100,000 genomes project, which were subject to strict region-based filtering, clinical review, and validation studies where possible. In addition, we performed region and variant annotation-based burden testing in 7,862 unrelated probands against matched unaffected controls. Results: We prioritised eleven DNVs and identified an additional variant overlapping one of the eleven. Ten of these twelve variants (82%) are in genes that are a strong match to the individual's phenotype and six had not previously been identified. Through burden testing, we did not observe a significant enrichment of potentially deleterious promoter and/or UTR variants in individuals with rare disease collectively across any of our region or variant annotations. Conclusions: Overall, we demonstrate the value of screening promoters and UTRs to uncover additional diagnoses for previously undiagnosed individuals with rare disease and provide a framework for doing so without dramatically increasing interpretation burden.

3.
Genome Med ; 14(1): 79, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35883178

RESUMEN

BACKGROUND: Genomic variants which disrupt splicing are a major cause of rare genetic diseases. However, variants which lie outside of the canonical splice sites are difficult to interpret clinically. Improving the clinical interpretation of non-canonical splicing variants offers a major opportunity to uplift diagnostic yields from whole genome sequencing data. METHODS: Here, we examine the landscape of splicing variants in whole-genome sequencing data from 38,688 individuals in the 100,000 Genomes Project and assess the contribution of non-canonical splicing variants to rare genetic diseases. We use a variant-level constraint metric (the mutability-adjusted proportion of singletons) to identify constrained functional variant classes near exon-intron junctions and at putative splicing branchpoints. To identify new diagnoses for individuals with unsolved rare diseases in the 100,000 Genomes Project, we identified individuals with de novo single-nucleotide variants near exon-intron boundaries and at putative splicing branchpoints in known disease genes. We identified candidate diagnostic variants through manual phenotype matching and confirmed new molecular diagnoses through clinical variant interpretation and functional RNA studies. RESULTS: We show that near-splice positions and splicing branchpoints are highly constrained by purifying selection and harbour potentially damaging non-coding variants which are amenable to systematic analysis in sequencing data. From 258 de novo splicing variants in known rare disease genes, we identify 35 new likely diagnoses in probands with an unsolved rare disease. To date, we have confirmed a new diagnosis for six individuals, including four in whom RNA studies were performed. CONCLUSIONS: Overall, we demonstrate the clinical value of examining non-canonical splicing variants in individuals with unsolved rare diseases.


Asunto(s)
Empalme del ARN , Enfermedades Raras , Exones , Humanos , Intrones , ARN , Enfermedades Raras/genética
4.
Am J Med Genet A ; 188(2): 595-599, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34611970

RESUMEN

Pathogenic variants in glutamate receptor, ionotropic, NMDA-1 (GRIN1) cause an autosomal dominant or recessive neurodevelopmental disorder with global developmental delay, with or without seizures (AD or AR GRIN1-NDD). Here, we describe a novel homozygous canonical splice site variant in GRIN1 in a 12-month-old boy with early infantile epileptic encephalopathy and severe global developmental delay. This represents only the second family with a homozygous predicted-null variant in GRIN1 reported to date. We review the published literature on AR GRIN1-NDD and find that the phenotype in our patient is much more severe than those seen with homozygous missense variants. A similarly severe phenotype of intractable epilepsy and infantile death has only been reported in one other family with a homozygous nonsense variant in GRIN1. We, therefore, propose that biallelic predicted-null variants in GRIN1 can cause a markedly more severe clinical phenotype than AR GRIN1-NDD caused by missense variants.


Asunto(s)
Epilepsia , Espasmos Infantiles , Epilepsia/genética , Humanos , Lactante , N-Metilaspartato/genética , Proteínas del Tejido Nervioso/genética , Fenotipo , Receptores de N-Metil-D-Aspartato/genética , Espasmos Infantiles/diagnóstico , Espasmos Infantiles/genética
5.
Eur J Hum Genet ; 29(4): 593-603, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33223528

RESUMEN

ABL1 is a proto-oncogene encoding a nonreceptor tyrosine kinase, best known in the somatic BCR-ABL fusion gene associated with chronic myeloid leukaemia. Recently, germline missense variants in ABL1 have been found to cause an autosomal dominant developmental syndrome with congenital heart disease, skeletal malformations and characteristic facies. Here, we describe a series of six new unrelated individuals with heterozygous missense variants in ABL1 (including four novel variants) identified via whole exome sequencing. All the affected individuals in this series recapitulate the phenotype of the ABL1 developmental syndrome and additionally we affirm that hearing impairment is a common feature of the condition. Four of the variants cluster in the myristoyl-binding pocket of ABL1, a region critical for auto-inhibitory regulation of the kinase domain. Bio-informatic analysis of transcript-wide conservation and germline/somatic variation reveals that this pocket region is subject to high missense constraint and evolutionary conservation. Functional work to investigate ABL1 kinase activity in vitro by transient transfection of HEK293T cells with variant ABL1 plasmid constructs revealed increased phosphorylation of ABL1-specific substrates compared to wild-type. The increased tyrosine kinase activity was suppressed by imatinib treatment. This case series of six new patients with germline heterozygous ABL1 missense variants further delineates the phenotypic spectrum of this condition and recognises microcephaly as a common finding. Our analysis supports an ABL1 gain-of-function mechanism due to loss of auto-inhibition, and demonstrates the potential for pharmacological inhibition using imatinib.


Asunto(s)
Deformidades del Pie/genética , Deformidades de la Mano/genética , Pérdida Auditiva/genética , Cardiopatías Congénitas/genética , Proteínas Proto-Oncogénicas c-abl/genética , Adolescente , Adulto , Sitios de Unión , Niño , Preescolar , Femenino , Deformidades del Pie/patología , Células HEK293 , Deformidades de la Mano/patología , Pérdida Auditiva/patología , Cardiopatías Congénitas/patología , Humanos , Masculino , Mutación Missense , Ácido Mirístico/metabolismo , Fenotipo , Unión Proteica , Proteínas Proto-Oncogénicas c-abl/química , Proteínas Proto-Oncogénicas c-abl/metabolismo , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA