Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EMBO J ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907033

RESUMEN

Cell polarity networks are defined by quantitative features of their constituent feedback circuits, which must be tuned to enable robust and stable polarization, while also ensuring that networks remain responsive to dynamically changing cellular states and/or spatial cues during development. Using the PAR polarity network as a model, we demonstrate that these features are enabled by the dimerization of the polarity protein PAR-2 via its N-terminal RING domain. Combining theory and experiment, we show that dimer affinity is optimized to achieve dynamic, selective, and cooperative binding of PAR-2 to the plasma membrane during polarization. Reducing dimerization compromises positive feedback and robustness of polarization. Conversely, enhanced dimerization renders the network less responsive due to kinetic trapping of PAR-2 on internal membranes and reduced sensitivity of PAR-2 to the anterior polarity kinase, aPKC/PKC-3. Thus, our data reveal a key role for a dynamically oligomeric RING domain in optimizing interaction affinities to support a robust and responsive cell polarity network, and highlight how optimization of oligomerization kinetics can serve as a strategy for dynamic and cooperative intracellular targeting.

2.
Curr Biol ; 33(20): 4298-4311.e6, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37729912

RESUMEN

During development, the conserved PAR polarity network is continuously redeployed, requiring that it adapt to changing cellular contexts and environmental cues. In the early C. elegans embryo, polarity shifts from being a cell-autonomous process in the zygote to one that must be coordinated between neighbors as the embryo becomes multicellular. Here, we sought to explore how the PAR network adapts to this shift in the highly tractable C. elegans germline P lineage. We find that although P lineage blastomeres exhibit a distinct pattern of polarity emergence compared with the zygote, the underlying mechanochemical processes that drive polarity are largely conserved. However, changes in the symmetry-breaking cues of P lineage blastomeres ensure coordination of their polarity axis with neighboring cells. Specifically, we show that furrow-directed cortical flows associated with cytokinesis of the zygote induce symmetry breaking in the germline blastomere P1 by transporting PAR-3 into the nascent cell contact. This pool of PAR-3 then biases downstream PAR polarization pathways to establish the polarity axis of P1 with respect to the position of its anterior sister, AB. Thus, our data suggest that cytokinesis itself induces symmetry breaking through the advection of polarity proteins by furrow-directed flows. By directly linking cell polarity to cell division, furrow-directed cortical flows could be a general mechanism to ensure proper organization of cell polarity within actively dividing systems.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Polaridad Celular , División Celular , Sesgo , Embrión no Mamífero/metabolismo
3.
J Cell Biol ; 222(8)2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37265444

RESUMEN

Clustering of membrane-associated molecules is thought to promote interactions with the actomyosin cortex, enabling size-dependent transport by actin flows. Consistent with this model, in the Caenorhabditis elegans zygote, efficient anterior segregation of the polarity protein PAR-3 requires oligomerization. However, through direct assessment of local coupling between motion of PAR proteins and the underlying cortex, we find no links between PAR-3 oligomer size and the degree of coupling. Indeed, both anterior and posterior PAR proteins experience similar advection velocities, at least over short distances. Consequently, differential cortex engagement cannot account for selectivity of PAR protein segregation by cortical flows. Combining experiment and theory, we demonstrate that a key determinant of differential segregation of PAR proteins by cortical flow is the stability of membrane association, which is enhanced by clustering and enables transport across cellular length scales. Thus, modulation of membrane binding dynamics allows cells to achieve selective transport by cortical flows despite widespread coupling between membrane-associated molecules and the cell cortex.


Asunto(s)
Actinas , Proteínas de Caenorhabditis elegans , Proteínas Serina-Treonina Quinasas , Animales , Actinas/metabolismo , Actomiosina/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Polaridad Celular , Citoplasma/metabolismo , Embrión no Mamífero/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
4.
MicroPubl Biol ; 20222022.
Artículo en Inglés | MEDLINE | ID: mdl-35996692

RESUMEN

Engineered analog sensitive kinases provide a highly effective method for acute, controllable, and highly selective inhibition of kinase activity. Here we describe the design and characterization of an analog sensitive allele of the polarity kinase, PKC-3. This allele supports normal function as measured by its ability to exclude PAR-2 from the anterior membrane of zygotes, and is rapidly and reversibly inhibited in a dose-dependent manner by the ATP analog 1NA-PP1. This allele provides a new tool to explore the role of PKC-3 in diverse contexts within C. elegans , particularly those in which acute and reversible control of PKC-3 kinase activity may be desired.

5.
Development ; 149(14)2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35713287

RESUMEN

Biological systems are increasingly viewed through a quantitative lens that demands accurate measures of gene expression and local protein concentrations. CRISPR/Cas9 gene tagging has enabled increased use of fluorescence to monitor proteins at or near endogenous levels under native regulatory control. However, owing to typically lower expression levels, experiments using endogenously tagged genes run into limits imposed by autofluorescence (AF). AF is often a particular challenge in wavelengths occupied by commonly used fluorescent proteins (GFP, mNeonGreen). Stimulated by our work in C. elegans, we describe and validate Spectral Autofluorescence Image Correction By Regression (SAIBR), a simple platform-independent protocol and FIJI plug-in to correct for autofluorescence using standard filter sets and illumination conditions. Validated for use in C. elegans embryos, starfish oocytes and fission yeast, SAIBR is ideal for samples with a single dominant AF source; it achieves accurate quantitation of fluorophore signal, and enables reliable detection and quantification of even weakly expressed proteins. Thus, SAIBR provides a highly accessible low-barrier way to incorporate AF correction as standard for researchers working on a broad variety of cell and developmental systems.


Asunto(s)
Caenorhabditis elegans , Proteínas , Animales , Fluorescencia , Colorantes Fluorescentes , Genes Reporteros
6.
Nat Commun ; 12(1): 6253, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34716305

RESUMEN

Deviations from Brownian motion leading to anomalous diffusion are found in transport dynamics from quantum physics to life sciences. The characterization of anomalous diffusion from the measurement of an individual trajectory is a challenging task, which traditionally relies on calculating the trajectory mean squared displacement. However, this approach breaks down for cases of practical interest, e.g., short or noisy trajectories, heterogeneous behaviour, or non-ergodic processes. Recently, several new approaches have been proposed, mostly building on the ongoing machine-learning revolution. To perform an objective comparison of methods, we gathered the community and organized an open competition, the Anomalous Diffusion challenge (AnDi). Participating teams applied their algorithms to a commonly-defined dataset including diverse conditions. Although no single method performed best across all scenarios, machine-learning-based approaches achieved superior performance for all tasks. The discussion of the challenge results provides practical advice for users and a benchmark for developers.

7.
Learn Mem ; 28(2): 53-71, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33452115

RESUMEN

Discrimination of sensory signals is essential for an organism to form and retrieve memories of relevance in a given behavioral context. Sensory representations are modified dynamically by changes in behavioral state, facilitating context-dependent selection of behavior, through signals carried by noradrenergic input in mammals, or octopamine (OA) in insects. To understand the circuit mechanisms of this signaling, we characterized the function of two OA neurons, sVUM1 neurons, that originate in the subesophageal zone (SEZ) and target the input region of the memory center, the mushroom body (MB) calyx, in larval Drosophila We found that sVUM1 neurons target multiple neurons, including olfactory projection neurons (PNs), the inhibitory neuron APL, and a pair of extrinsic output neurons, but relatively few mushroom body intrinsic neurons, Kenyon cells. PN terminals carried the OA receptor Oamb, a Drosophila α1-adrenergic receptor ortholog. Using an odor discrimination learning paradigm, we showed that optogenetic activation of OA neurons compromised discrimination of similar odors but not learning ability. Our results suggest that sVUM1 neurons modify odor representations via multiple extrinsic inputs at the sensory input area to the MB olfactory learning circuit.


Asunto(s)
Conducta Animal/fisiología , Discriminación en Psicología/fisiología , Larva/fisiología , Aprendizaje/fisiología , Cuerpos Pedunculados/fisiología , Neuronas/fisiología , Octopamina/metabolismo , Percepción Olfatoria/fisiología , Animales , Drosophila , Neuronas/metabolismo , Optogenética
8.
Curr Opin Cell Biol ; 62: 123-134, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31760155

RESUMEN

Beginning with Turing's seminal work [1], decades of research have demonstrated the fundamental ability of biochemical networks to generate and sustain the formation of patterns. However, it is increasingly appreciated that biochemical networks also both shape and are shaped by physical and mechanical processes [2, 3, 4]. One such process is fluid flow. In many respects, the cytoplasm, membrane and actin cortex all function as fluids, and as they flow, they drive bulk transport of molecules throughout the cell. By coupling biochemical activity to long-range molecular transport, flows can shape the distributions of molecules in space. Here, we review the various types of flows that exist in cells, with the aim of highlighting recent advances in our understanding of how flows are generated and how they contribute to intracellular patterning processes, such as the establishment of cell polarity.


Asunto(s)
Actomiosina/metabolismo , Polaridad Celular/fisiología , Citoplasma/metabolismo , Animales , Drosophilidae
9.
Curr Biol ; 29(12): 1911-1923.e5, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31155349

RESUMEN

How do cells polarize at the correct time and in response to the correct cues? In the C. elegans zygote, the timing and geometry of polarization rely on a single dominant cue-the sperm centrosome-that matures at the end of meiosis and specifies the nascent posterior. Polarization requires that the conserved PAR proteins, which specify polarity in the zygote, be poised to respond to the centrosome. Yet, how and when PAR proteins achieve this unpolarized, but responsive, state is unknown. We show that oocyte maturation initiates a fertilization-independent PAR activation program. PAR proteins are initially not competent to polarize but gradually acquire this ability following oocyte maturation. Surprisingly, this program allows symmetry breaking even in unfertilized oocytes lacking centrosomes. Thus, if PAR proteins can respond to multiple polarizing cues, how is specificity for the centrosome achieved? Specificity is enforced by Polo-like and Aurora kinases (PLK-1 and AIR-1 in C. elegans), which impose a delay in the activation of the PAR network so that it coincides with maturation of the centrosome cue. This delay suppresses polarization by non-centrosomal cues, which can otherwise trigger premature polarization and multiple or reversed polarity domains. Taken together, these findings identify a regulatory program that enforces proper polarization by synchronizing PAR network activation with cell cycle progression, thereby ensuring that PAR proteins respond specifically to the correct cue. Temporal control of polarity network activity is likely to be a common strategy to ensure robust, dynamic, and specific polarization in response to developmentally deployed cues.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/metabolismo , Señales (Psicología) , Oocitos/crecimiento & desarrollo , Oocitos/fisiología , Orientación Espacial , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
10.
J Cell Sci ; 132(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31221727

RESUMEN

The association of molecules within membrane microdomains is critical for the intracellular organization of cells. During polarization of the C. elegans zygote, both polarity proteins and actomyosin regulators associate within dynamic membrane-associated foci. Recently, a novel class of asymmetric membrane-associated structures was described that appeared to be enriched in phosphatidylinositol 4,5-bisphosphate (PIP2), suggesting that PIP2 domains could constitute signaling hubs to promote cell polarization and actin nucleation. Here, we probe the nature of these domains using a variety of membrane- and actin cortex-associated probes. These data demonstrate that these domains are filopodia, which are stimulated transiently during polarity establishment and accumulate in the zygote anterior. The resulting membrane protrusions create local membrane topology that quantitatively accounts for observed local increases in the fluorescence signal of membrane-associated molecules, suggesting molecules are not selectively enriched in these domains relative to bulk membrane and that the PIP2 pool as revealed by PHPLCδ1 simply reflects plasma membrane localization. Given the ubiquity of 3D membrane structures in cells, including filopodia, microvilli and membrane folds, similar caveats are likely to apply to analysis of membrane-associated molecules in a broad range of systems.


Asunto(s)
Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Microdominios de Membrana/metabolismo , Seudópodos/metabolismo , Cigoto/metabolismo , Actinas/metabolismo , Animales , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Proteínas Fluorescentes Verdes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...