RESUMEN
Next-generation sequencing is a superior method for detecting known and novel RNA fusions in formalin-fixed, paraffin-embedded tissue over fluorescence in situ hybridization and RT-PCR. However, confidence in fusion calling and true negatives may be compromised by poor RNA quality. Using a commercial panel of 507 genes and the recommended 3-million read threshold to accept results, two cases yielded false negatives while exceeding this recommendation during clinical validation. To develop a reliable quality control metric that better reflects internal sample quality and improves call confidence, gene expression across 361 patient tumor samples was evaluated to derive a set of 15 genes to serve as a proxy quality control (pQC). These 15 genes were assessed for their normalized expression using the sequencing data from each case and selected for robustness. A threshold of 11 pQC genes produced a 4.71% fail rate, selected for stringency as an acceptable level of repeated testing in the clinical setting, minimizing false-negative calls. To increase the chance that low-quality samples pass pQC, a revision to the library preparation method was also tested, with 75% of previously failed samples passing pQC on resequencing by increasing cDNA input. Taken together, a next-generation sequencing analysis quality control tool is presented that serves as a surrogate for housekeeping genes and improves confidence in fusion calls.
Asunto(s)
Técnicas de Diagnóstico Molecular , ARN , Humanos , Reproducibilidad de los Resultados , Hibridación Fluorescente in Situ , Adhesión en Parafina/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodosRESUMEN
Li-Fraumeni syndrome (LFS) is a hereditary cancer predisposition syndrome associated with germline TP53 pathogenic variants. Here, we perform whole-genome sequence (WGS) analysis of tumors from 22 patients with TP53 germline pathogenic variants. We observe somatic mutations affecting Wnt, PI3K/AKT signaling, epigenetic modifiers and homologous recombination genes as well as mutational signatures associated with prior chemotherapy. We identify near-ubiquitous early loss of heterozygosity of TP53, with gain of the mutant allele. This occurs earlier in these tumors compared to tumors with somatic TP53 mutations, suggesting the timing of this mark may distinguish germline from somatic TP53 mutations. Phylogenetic trees of tumor evolution, reconstructed from bulk and multi-region WGS, reveal that LFS tumors exhibit comparatively limited heterogeneity. Overall, our study delineates early copy number gains of mutant TP53 as a characteristic mutational process in LFS tumorigenesis, likely arising years prior to tumor diagnosis.
Asunto(s)
Síndrome de Li-Fraumeni , Síndromes Neoplásicos Hereditarios , Humanos , Proteína p53 Supresora de Tumor/genética , Predisposición Genética a la Enfermedad , Variaciones en el Número de Copia de ADN/genética , Fosfatidilinositol 3-Quinasas/genética , Filogenia , Síndrome de Li-Fraumeni/diagnóstico , Síndrome de Li-Fraumeni/genética , Mutación de Línea Germinal/genética , MutaciónRESUMEN
We conducted integrative somatic-germline analyses by deeply sequencing 864 cancer-associated genes, complete genomes and transcriptomes for 300 mostly previously treated children and adolescents/young adults with cancer of poor prognosis or with rare tumors enrolled in the SickKids Cancer Sequencing (KiCS) program. Clinically actionable variants were identified in 56% of patients. Improved diagnostic accuracy led to modified management in a subset. Therapeutically targetable variants (54% of patients) were of unanticipated timing and type, with over 20% derived from the germline. Corroborating mutational signatures (SBS3/BRCAness) in patients with germline homologous recombination defects demonstrates the potential utility of PARP inhibitors. Mutational burden was significantly elevated in 9% of patients. Sequential sampling identified changes in therapeutically targetable drivers in over one-third of patients, suggesting benefit from rebiopsy for genomic analysis at the time of relapse. Comprehensive cancer genomic profiling is useful at multiple points in the care trajectory for children and adolescents/young adults with cancer, supporting its integration into early clinical management.