Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nature ; 626(8001): 1125-1132, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38355796

RESUMEN

To conserve energy during starvation and stress, many organisms use hibernation factor proteins to inhibit protein synthesis and protect their ribosomes from damage1,2. In bacteria, two families of hibernation factors have been described, but the low conservation of these proteins and the huge diversity of species, habitats and environmental stressors have confounded their discovery3-6. Here, by combining cryogenic electron microscopy, genetics and biochemistry, we identify Balon, a new hibernation factor in the cold-adapted bacterium Psychrobacter urativorans. We show that Balon is a distant homologue of the archaeo-eukaryotic translation factor aeRF1 and is found in 20% of representative bacteria. During cold shock or stationary phase, Balon occupies the ribosomal A site in both vacant and actively translating ribosomes in complex with EF-Tu, highlighting an unexpected role for EF-Tu in the cellular stress response. Unlike typical A-site substrates, Balon binds to ribosomes in an mRNA-independent manner, initiating a new mode of ribosome hibernation that can commence while ribosomes are still engaged in protein synthesis. Our work suggests that Balon-EF-Tu-regulated ribosome hibernation is a ubiquitous bacterial stress-response mechanism, and we demonstrate that putative Balon homologues in Mycobacteria bind to ribosomes in a similar fashion. This finding calls for a revision of the current model of ribosome hibernation inferred from common model organisms and holds numerous implications for how we understand and study ribosome hibernation.


Asunto(s)
Proteínas Bacterianas , Respuesta al Choque por Frío , Factores de Terminación de Péptidos , Biosíntesis de Proteínas , Psychrobacter , Proteínas Ribosómicas , Ribosomas , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/metabolismo , Factor Tu de Elongación Peptídica/ultraestructura , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , Ribosomas/química , Ribosomas/metabolismo , Ribosomas/ultraestructura , Psychrobacter/química , Psychrobacter/genética , Psychrobacter/metabolismo , Psychrobacter/ultraestructura , Microscopía por Crioelectrón , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Factores de Terminación de Péptidos/ultraestructura
2.
Nat Cancer ; 5(4): 659-672, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38286828

RESUMEN

The mitochondrial genome (mtDNA) encodes essential machinery for oxidative phosphorylation and metabolic homeostasis. Tumor mtDNA is among the most somatically mutated regions of the cancer genome, but whether these mutations impact tumor biology is debated. We engineered truncating mutations of the mtDNA-encoded complex I gene, Mt-Nd5, into several murine models of melanoma. These mutations promoted a Warburg-like metabolic shift that reshaped tumor microenvironments in both mice and humans, consistently eliciting an anti-tumor immune response characterized by loss of resident neutrophils. Tumors bearing mtDNA mutations were sensitized to checkpoint blockade in a neutrophil-dependent manner, with induction of redox imbalance being sufficient to induce this effect in mtDNA wild-type tumors. Patient lesions bearing >50% mtDNA mutation heteroplasmy demonstrated a response rate to checkpoint blockade that was improved by ~2.5-fold over mtDNA wild-type cancer. These data nominate mtDNA mutations as functional regulators of cancer metabolism and tumor biology, with potential for therapeutic exploitation and treatment stratification.


Asunto(s)
ADN Mitocondrial , Glucólisis , Inhibidores de Puntos de Control Inmunológico , Melanoma , Mutación , ADN Mitocondrial/genética , Animales , Melanoma/genética , Melanoma/tratamiento farmacológico , Ratones , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Glucólisis/genética , Microambiente Tumoral , Línea Celular Tumoral , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Neutrófilos/metabolismo , Neutrófilos/inmunología , Mitocondrias/metabolismo , Mitocondrias/genética , Fosforilación Oxidativa/efectos de los fármacos
4.
Chem Sci ; 14(41): 11429-11440, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37886098

RESUMEN

Sulfolactate (SL) is a short-chain organosulfonate that is an important reservoir of sulfur in the biosphere. SL is produced by oxidation of sulfolactaldehyde (SLA), which in turn derives from sulfoglycolysis of the sulfosugar sulfoquinovose, or through oxidation of 2,3-dihydroxypropanesulfonate. Oxidation of SLA is catalyzed by SLA dehydrogenases belonging to the aldehyde dehydrogenase superfamily. We report that SLA dehydrogenase RlGabD from the sulfoglycolytic bacterium Rhizobium leguminsarum SRDI565 can use both NAD+ and NADP+ as cofactor to oxidize SLA, and indicatively operates through a rapid equilibrium ordered mechanism. We report the cryo-EM structure of RlGabD bound to NADH, revealing a tetrameric quaternary structure and supporting proposal of organosulfonate binding residues in the active site, and a catalytic mechanism. Sequence based homology searches identified SLA dehydrogenase homologs in a range of putative sulfoglycolytic gene clusters in bacteria predominantly from the phyla Actinobacteria, Firmicutes, and Proteobacteria. This work provides a structural and biochemical view of SLA dehydrogenases to complement our knowledge of SLA reductases, and provide detailed insights into a critical step in the organosulfur cycle.

5.
Sci Rep ; 13(1): 10718, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400515

RESUMEN

p27KIP1 (cyclin-dependent kinase inhibitor 1B, p27) is a member of the CIP/KIP family of CDK (cyclin dependent kinase) regulators that inhibit cell cycle CDKs. p27 phosphorylation by CDK1/2, signals its recruitment to the SCFSKP2 (S-phase kinase associated protein 1 (SKP1)-cullin-SKP2) E3 ubiquitin ligase complex for proteasomal degradation. The nature of p27 binding to SKP2 and CKS1 was revealed by the SKP1-SKP2-CKS1-p27 phosphopeptide crystal structure. Subsequently, a model for the hexameric CDK2-cyclin A-CKS1-p27-SKP1-SKP2 complex was proposed by overlaying an independently determined CDK2-cyclin A-p27 structure. Here we describe the experimentally determined structure of the isolated CDK2-cyclin A-CKS1-p27-SKP1-SKP2 complex at 3.4 Å global resolution using cryogenic electron microscopy. This structure supports previous analysis in which p27 was found to be structurally dynamic, transitioning from disordered to nascent secondary structure on target binding. We employed 3D variability analysis to further explore the conformational space of the hexameric complex and uncovered a previously unidentified hinge motion centred on CKS1. This flexibility gives rise to open and closed conformations of the hexameric complex that we propose may contribute to p27 regulation by facilitating recognition with SCFSKP2. This 3D variability analysis further informed particle subtraction and local refinement approaches to enhance the local resolution of the complex.


Asunto(s)
Quinasas CDC2-CDC28 , Proteínas Quinasas Asociadas a Fase-S , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Ciclina A/metabolismo , Microscopía por Crioelectrón , Quinasas Ciclina-Dependientes/metabolismo
6.
bioRxiv ; 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36993533

RESUMEN

The mitochondrial genome encodes essential machinery for respiration and metabolic homeostasis but is paradoxically among the most common targets of somatic mutation in the cancer genome, with truncating mutations in respiratory complex I genes being most over-represented1. While mitochondrial DNA (mtDNA) mutations have been associated with both improved and worsened prognoses in several tumour lineages1-3, whether these mutations are drivers or exert any functional effect on tumour biology remains controversial. Here we discovered that complex I-encoding mtDNA mutations are sufficient to remodel the tumour immune landscape and therapeutic resistance to immune checkpoint blockade. Using mtDNA base editing technology4 we engineered recurrent truncating mutations in the mtDNA-encoded complex I gene, Mt-Nd5, into murine models of melanoma. Mechanistically, these mutations promoted utilisation of pyruvate as a terminal electron acceptor and increased glycolytic flux without major effects on oxygen consumption, driven by an over-reduced NAD pool and NADH shuttling between GAPDH and MDH1, mediating a Warburg-like metabolic shift. In turn, without modifying tumour growth, this altered cancer cell-intrinsic metabolism reshaped the tumour microenvironment in both mice and humans, promoting an anti-tumour immune response characterised by loss of resident neutrophils. This subsequently sensitised tumours bearing high mtDNA mutant heteroplasmy to immune checkpoint blockade, with phenocopy of key metabolic changes being sufficient to mediate this effect. Strikingly, patient lesions bearing >50% mtDNA mutation heteroplasmy also demonstrated a >2.5-fold improved response rate to checkpoint inhibitor blockade. Taken together these data nominate mtDNA mutations as functional regulators of cancer metabolism and tumour biology, with potential for therapeutic exploitation and treatment stratification.

7.
Structure ; 31(3): 244-252.e4, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36805128

RESUMEN

Sulfoquinovose (SQ) is a key component of plant sulfolipids (sulfoquinovosyl diacylglycerols) and a major environmental reservoir of biological sulfur. Breakdown of SQ is achieved by bacteria through the pathways of sulfoglycolysis. The sulfoglycolytic sulfofructose transaldolase (sulfo-SFT) pathway is used by gut-resident firmicutes and soil saprophytes. After isomerization of SQ to sulfofructose (SF), the namesake enzyme catalyzes the transaldol reaction of SF transferring dihydroxyacetone to 3C/4C acceptors to give sulfolactaldehyde and fructose-6-phosphate or sedoheptulose-7-phosphate. We report the 3D cryo-EM structure of SF transaldolase from Bacillus megaterium in apo and ligand bound forms, revealing a decameric structure formed from two pentameric rings of the protomer. We demonstrate a covalent "Schiff base" intermediate formed by reaction of SF with Lys89 within a conserved Asp-Lys-Glu catalytic triad and defined by an Arg-Trp-Arg sulfonate recognition triad. The structural characterization of the signature enzyme of the sulfo-SFT pathway provides key insights into molecular recognition of the sulfonate group of sulfosugars.


Asunto(s)
Fructosa-Bifosfato Aldolasa , Transaldolasa , Transaldolasa/química , Transaldolasa/metabolismo , Fructosa-Bifosfato Aldolasa/química , Metilglucósidos/química , Metilglucósidos/metabolismo
8.
Science ; 379(6630): 351-357, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36701435

RESUMEN

The molecular mode of action of biguanides, including the drug metformin, which is widely used in the treatment of diabetes, is incompletely characterized. Here, we define the inhibitory drug-target interaction(s) of a model biguanide with mammalian respiratory complex I by combining cryo-electron microscopy and enzyme kinetics. We interpret these data to explain the selectivity of biguanide binding to different enzyme states. The primary inhibitory site is in an amphipathic region of the quinone-binding channel, and an additional binding site is in a pocket on the intermembrane-space side of the enzyme. An independent local chaotropic interaction, not previously described for any drug, displaces a portion of a key helix in the membrane domain. Our data provide a structural basis for biguanide action and enable the rational design of medicinal biguanides.


Asunto(s)
Biguanidas , Complejo I de Transporte de Electrón , Animales , Microscopía por Crioelectrón , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Metformina/farmacología , Mitocondrias/metabolismo , Biguanidas/farmacología
9.
Phys Chem Chem Phys ; 24(40): 24767-24783, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36200672

RESUMEN

Ultrafast two-dimensional infrared (2D-IR) spectroscopy of Escherichia coli Hyd-1 (EcHyd-1) reveals the structural and dynamic influence of the protein scaffold on the Fe(CO)(CN)2 unit of the active site. Measurements on as-isolated EcHyd-1 probed a mixture of active site states including two, which we assign to Nir-SI/II, that have not been previously observed in the E. coli enzyme. Explicit assignment of carbonyl (CO) and cyanide (CN) stretching bands to each state is enabled by 2D-IR. Energies of vibrational levels up to and including two-quantum vibrationally excited states of the CO and CN modes have been determined along with the associated vibrational relaxation dynamics. The carbonyl stretching mode potential is well described by a Morse function and couples weakly to the cyanide stretching vibrations. In contrast, the two CN stretching modes exhibit extremely strong coupling, leading to the observation of formally forbidden vibrational transitions in the 2D-IR spectra. We show that the vibrational relaxation times and structural dynamics of the CO and CN ligand stretching modes of the enzyme active site differ markedly from those of a model compound K[CpFe(CO)(CN)2] in aqueous solution and conclude that the protein scaffold creates a unique biomolecular environment for the NiFe site that cannot be represented by analogy to simple models of solvation.


Asunto(s)
Hidrogenasas , Hidrogenasas/química , Dominio Catalítico , Escherichia coli/metabolismo , Ligandos , Cianuros/química , Espectrofotometría Infrarroja/métodos , Proteínas
10.
Elife ; 112022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36018003

RESUMEN

Electron bifurcation is a fundamental energy conservation mechanism in nature in which two electrons from an intermediate-potential electron donor are split so that one is sent along a high-potential pathway to a high-potential acceptor and the other is sent along a low-potential pathway to a low-potential acceptor. This process allows endergonic reactions to be driven by exergonic ones and is an alternative, less recognized, mechanism of energy coupling to the well-known chemiosmotic principle. The electron-bifurcating [FeFe] hydrogenase from Thermotoga maritima (HydABC) requires both NADH and ferredoxin to reduce protons generating hydrogen. The mechanism of electron bifurcation in HydABC remains enigmatic in spite of intense research efforts over the last few years. Structural information may provide the basis for a better understanding of spectroscopic and functional information. Here, we present a 2.3 Å electron cryo-microscopy structure of HydABC. The structure shows a heterododecamer composed of two independent 'halves' each made of two strongly interacting HydABC heterotrimers connected via a [4Fe-4S] cluster. A central electron transfer pathway connects the active sites for NADH oxidation and for proton reduction. We identified two conformations of a flexible iron-sulfur cluster domain: a 'closed bridge' and an 'open bridge' conformation, where a Zn2+ site may act as a 'hinge' allowing domain movement. Based on these structural revelations, we propose a possible mechanism of electron bifurcation in HydABC where the flavin mononucleotide serves a dual role as both the electron bifurcation center and as the NAD+ reduction/NADH oxidation site.


Asunto(s)
Hidrogenasas , Proteínas Hierro-Azufre , Proteínas Bacterianas/metabolismo , Electrones , Ferredoxinas/química , Ferredoxinas/metabolismo , Mononucleótido de Flavina/metabolismo , Hidrógeno/metabolismo , Hidrogenasas/metabolismo , Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , NAD/metabolismo , Oxidación-Reducción , Protones , Azufre/metabolismo
11.
Structure ; 30(10): 1443-1451.e5, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35907402

RESUMEN

Enzymatic hydrolysis of α-L-fucose from fucosylated glycoconjugates is consequential in bacterial infections and the neurodegenerative lysosomal storage disorder fucosidosis. Understanding human α-L-fucosidase catalysis, in an effort toward drug design, has been hindered by the absence of three-dimensional structural data for any animal fucosidase. Here, we have used cryoelectron microscopy (cryo-EM) to determine the structure of human lysosomal α-L-fucosidase (FucA1) in both an unliganded state and in complex with the inhibitor deoxyfuconojirimycin. These structures, determined at 2.49 Å resolution, reveal the homotetrameric structure of FucA1, the architecture of the catalytic center, and the location of both natural population variations and disease-causing mutations. Furthermore, this work has conclusively identified the hitherto contentious identity of the catalytic acid/base as aspartate-276, representing a shift from both the canonical glutamate acid/base residue and a previously proposed glutamate residue. These findings have furthered our understanding of how FucA1 functions in both health and disease.


Asunto(s)
Fucosa , alfa-L-Fucosidasa , Ácido Aspártico , Catálisis , Microscopía por Crioelectrón , Glutamatos , Glicoconjugados , Humanos , alfa-L-Fucosidasa/genética
12.
J Biol Chem ; 298(3): 101602, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35063503

RESUMEN

Mitochondrial complex I (NADH:ubiquinone oxidoreductase), a crucial enzyme in energy metabolism, captures the redox potential energy from NADH oxidation/ubiquinone reduction to create the proton motive force used to drive ATP synthesis in oxidative phosphorylation. High-resolution single-particle electron cryo-EM analyses have provided detailed structural knowledge of the catalytic machinery of complex I, but not of the molecular principles of its energy transduction mechanism. Although ubiquinone is considered to bind in a long channel at the interface of the membrane-embedded and hydrophilic domains, with channel residues likely involved in coupling substrate reduction to proton translocation, no structures with the channel fully occupied have yet been described. Here, we report the structure (determined by cryo-EM) of mouse complex I with a tight-binding natural product acetogenin inhibitor, which resembles the native substrate, bound along the full length of the expected ubiquinone-binding channel. Our structure reveals the mode of acetogenin binding and the molecular basis for structure-activity relationships within the acetogenin family. It also shows that acetogenins are such potent inhibitors because they are highly hydrophobic molecules that contain two specific hydrophilic moieties spaced to lock into two hydrophilic regions of the otherwise hydrophobic channel. The central hydrophilic section of the channel does not favor binding of the isoprenoid chain when the native substrate is fully bound but stabilizes the ubiquinone/ubiquinol headgroup as it transits to/from the active site. Therefore, the amphipathic nature of the channel supports both tight binding of the amphipathic inhibitor and rapid exchange of the ubiquinone/ubiquinol substrate and product.


Asunto(s)
Acetogeninas , Complejo I de Transporte de Electrón , Acetogeninas/antagonistas & inhibidores , Acetogeninas/metabolismo , Acetogeninas/farmacología , Animales , Microscopía por Crioelectrón , Complejo I de Transporte de Electrón/metabolismo , Ratones , NAD/metabolismo , Oxidación-Reducción , Relación Estructura-Actividad , Ubiquinona/metabolismo
13.
Nat Commun ; 12(1): 6508, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34764280

RESUMEN

The O-linked ß-N-acetylglucosamine modification is a core signalling mechanism, with erroneous patterns leading to cancer and neurodegeneration. Although thousands of proteins are subject to this modification, only a single essential glycosyltransferase catalyses its installation, the O-GlcNAc transferase, OGT. Previous studies have provided truncated structures of OGT through X-ray crystallography, but the full-length protein has never been observed. Here, we report a 5.3 Å cryo-EM model of OGT. We show OGT is a dimer, providing a structural basis for how some X-linked intellectual disability mutations at the interface may contribute to disease. We observe that the catalytic section of OGT abuts a 13.5 tetratricopeptide repeat unit region and find the relative positioning of these sections deviate from the previously proposed, X-ray crystallography-based model. We also note that OGT exhibits considerable heterogeneity in tetratricopeptide repeat units N-terminal to the dimer interface with repercussions for how OGT binds protein ligands and partners.


Asunto(s)
Aminoácidos/metabolismo , Cromo/metabolismo , Microscopía por Crioelectrón/métodos , Ácidos Nicotínicos/metabolismo , Aminoácidos/química , Cromo/química , Cristalografía por Rayos X , Glicómica , Mutación/genética , Ácidos Nicotínicos/química , Estructura Secundaria de Proteína
14.
Nat Commun ; 11(1): 5261, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33067417

RESUMEN

Respiratory complex I (NADH:ubiquinone oxidoreductase) captures the free energy from oxidising NADH and reducing ubiquinone to drive protons across the mitochondrial inner membrane and power oxidative phosphorylation. Recent cryo-EM analyses have produced near-complete models of the mammalian complex, but leave the molecular principles of its long-range energy coupling mechanism open to debate. Here, we describe the 3.0-Å resolution cryo-EM structure of complex I from mouse heart mitochondria with a substrate-like inhibitor, piericidin A, bound in the ubiquinone-binding active site. We combine our structural analyses with both functional and computational studies to demonstrate competitive inhibitor binding poses and provide evidence that two inhibitor molecules bind end-to-end in the long substrate binding channel. Our findings reveal information about the mechanisms of inhibition and substrate reduction that are central for understanding the principles of energy transduction in mammalian complex I.


Asunto(s)
Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Inhibidores Enzimáticos/metabolismo , Mamíferos/metabolismo , Animales , Sitios de Unión , Microscopía por Crioelectrón , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo I de Transporte de Electrón/genética , Inhibidores Enzimáticos/química , Femenino , Mamíferos/genética , Ratones , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Simulación de Dinámica Molecular , Fosforilación Oxidativa , Piridinas/química , Piridinas/metabolismo
15.
J Am Chem Soc ; 142(28): 12226-12236, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32551568

RESUMEN

Metal-dependent formate dehydrogenases (FDHs) catalyze the reversible conversion of formate into CO2, a proton, and two electrons. Kinetic studies of FDHs provide key insights into their mechanism of catalysis, relevant as a guide for the development of efficient electrocatalysts for formate oxidation as well as for CO2 capture and utilization. Here, we identify and explain the kinetic isotope effect (KIE) observed for the oxidation of formate and deuterioformate by the Mo-containing FDH from Escherichia coli using three different techniques: steady-state solution kinetic assays, protein film electrochemistry (PFE), and pre-steady-state stopped-flow methods. For each technique, the Mo center of FDH is reoxidized at a different rate following formate oxidation, significantly affecting the observed kinetic behavior and providing three different viewpoints on the KIE. Steady-state turnover in solution, using an artificial electron acceptor, is kinetically limited by diffusional intermolecular electron transfer, masking the KIE. In contrast, interfacial electron transfer in PFE is fast, lifting the electron-transfer rate limitation and manifesting a KIE of 2.44. Pre-steady-state analyses using stopped-flow spectroscopy revealed a KIE of 3 that can be assigned to the C-H bond cleavage step during formate oxidation. We formalize our understanding of FDH catalysis by fitting all the data to a single kinetic model, recreating the condition-dependent shift in rate-limitation of FDH catalysis between active-site chemical catalysis and regenerative electron transfer. Furthermore, our model predicts the steady-state and time-dependent concentrations of catalytic intermediates, providing a valuable framework for the design of future mechanistic experiments.


Asunto(s)
Formiato Deshidrogenasas/metabolismo , Formiatos/metabolismo , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Catálisis , Cristalografía por Rayos X , Formiato Deshidrogenasas/química , Formiatos/química , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción
16.
Annu Rev Biophys ; 48: 165-184, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30786232

RESUMEN

Single-particle electron cryomicroscopy (cryo-EM) has led to a revolution in structural work on mammalian respiratory complex I. Complex I (mitochondrial NADH:ubiquinone oxidoreductase), a membrane-bound redox-driven proton pump, is one of the largest and most complicated enzymes in the mammalian cell. Rapid progress, following the first 5-Å resolution data on bovine complex I in 2014, has led to a model for mouse complex I at 3.3-Å resolution that contains 96% of the 8,518 residues and to the identification of different particle classes, some of which are assigned to biochemically defined states. Factors that helped improve resolution, including improvements to biochemistry, cryo-EM grid preparation, data collection strategy, and image processing, are discussed. Together with recent structural data from an ancient relative, membrane-bound hydrogenase, cryo-EM on mammalian complex I has provided new insights into the proton-pumping machinery and a foundation for understanding the enzyme's catalytic mechanism.


Asunto(s)
Microscopía por Crioelectrón , Complejo I de Transporte de Electrón/ultraestructura , Animales , Humanos , Lentes , Mitocondrias , Oxidación-Reducción
17.
Nat Struct Mol Biol ; 25(7): 548-556, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29915388

RESUMEN

Complex I (NADH:ubiquinone oxidoreductase) uses the reducing potential of NADH to drive protons across the energy-transducing inner membrane and power oxidative phosphorylation in mammalian mitochondria. Recent cryo-EM analyses have produced near-complete models of all 45 subunits in the bovine, ovine and porcine complexes and have identified two states relevant to complex I in ischemia-reperfusion injury. Here, we describe the 3.3-Å structure of complex I from mouse heart mitochondria, a biomedically relevant model system, in the 'active' state. We reveal a nucleotide bound in subunit NDUFA10, a nucleoside kinase homolog, and define mechanistically critical elements in the mammalian enzyme. By comparisons with a 3.9-Å structure of the 'deactive' state and with known bacterial structures, we identify differences in helical geometry in the membrane domain that occur upon activation or that alter the positions of catalytically important charged residues. Our results demonstrate the capability of cryo-EM analyses to challenge and develop mechanistic models for mammalian complex I.


Asunto(s)
Complejo I de Transporte de Electrón/química , Mitocondrias Cardíacas/enzimología , Animales , Sitios de Unión , Microscopía por Crioelectrón , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/ultraestructura , Activación Enzimática , Ratones , Modelos Moleculares , NADH Deshidrogenasa/química , NADH Deshidrogenasa/metabolismo , NADH Deshidrogenasa/ultraestructura , Nucleótidos/química , Nucleótidos/metabolismo , Fosfolípidos/química , Fosfolípidos/metabolismo , Elementos Estructurales de las Proteínas , Estructura Cuaternaria de Proteína , Subunidades de Proteína , Ubiquinona/química , Ubiquinona/metabolismo
18.
Structure ; 26(2): 312-319.e3, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29395787

RESUMEN

Complex I (NADH:ubiquinone oxidoreductase) is central to energy metabolism in mammalian mitochondria. It couples NADH oxidation by ubiquinone to proton transport across the energy-conserving inner membrane, catalyzing respiration and driving ATP synthesis. In the absence of substrates, active complex I gradually enters a pronounced resting or deactive state. The active-deactive transition occurs during ischemia and is crucial for controlling how respiration recovers upon reperfusion. Here, we set a highly active preparation of Bos taurus complex I into the biochemically defined deactive state, and used single-particle electron cryomicroscopy to determine its structure to 4.1 Å resolution. We show that the deactive state arises when critical structural elements that form the ubiquinone-binding site become disordered, and we propose reactivation is induced when substrate binding to the NADH-reduced enzyme templates their reordering. Our structure both rationalizes biochemical data on the deactive state and offers new insights into its physiological and cellular roles.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Modelos Moleculares , Animales , Bovinos , Microscopía por Crioelectrón , Oxidación-Reducción , Ubiquinona/metabolismo
19.
Open Biol ; 8(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29367351

RESUMEN

In oxidative phosphorylation, ATP synthases interconvert two forms of free energy: they are driven by the proton-motive force across an energy-transducing membrane to synthesize ATP and displace the ADP/ATP ratio from equilibrium. For thermodynamically efficient energy conversion they must be reversible catalysts. However, in many species ATP synthases are unidirectional catalysts (their rates of ATP hydrolysis are negligible), and in others mechanisms have evolved to regulate or minimize hydrolysis. Unidirectional catalysis by Paracoccus denitrificans ATP synthase has been attributed to its unique ζ subunit, which is structurally analogous to the mammalian inhibitor protein IF1 Here, we used homologous recombination to delete the ζ subunit from the P. denitrificans genome, and compared ATP synthesis and hydrolysis by the wild-type and knockout enzymes in inverted membrane vesicles and the F1-ATPase subcomplex. ATP synthesis was not affected by loss of the ζ subunit, and the rate of ATP hydrolysis increased by less than twofold, remaining negligible in comparison with the rates of the Escherichia coli and mammalian enzymes. Therefore, deleting the P. denitrificans ζ subunit is not sufficient to activate ATP hydrolysis. We close by considering our conclusions in the light of reversible catalysis and regulation in ATP synthase enzymes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Paracoccus denitrificans/enzimología , ATPasas de Translocación de Protón/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Eliminación de Gen , Hidrólisis , Paracoccus denitrificans/genética , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/genética
20.
Nat Microbiol ; 2: 17070, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28504659

RESUMEN

The MacA-MacB-TolC assembly of Escherichia coli is a transmembrane machine that spans the cell envelope and actively extrudes substrates, including macrolide antibiotics and polypeptide virulence factors. These transport processes are energized by the ATPase MacB, a member of the ATP-binding cassette (ABC) superfamily. We present an electron cryo-microscopy structure of the ABC-type tripartite assembly at near-atomic resolution. A hexamer of the periplasmic protein MacA bridges between a TolC trimer in the outer membrane and a MacB dimer in the inner membrane, generating a quaternary structure with a central channel for substrate translocation. A gating ring found in MacA is proposed to act as a one-way valve in substrate transport. The MacB structure features an atypical transmembrane domain with a closely packed dimer interface and a periplasmic opening that is the likely portal for substrate entry from the periplasm, with subsequent displacement through an allosteric transport mechanism.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/ultraestructura , Proteínas de la Membrana Bacteriana Externa/ultraestructura , Proteínas de Escherichia coli/ultraestructura , Escherichia coli/enzimología , Proteínas de Transporte de Membrana/ultraestructura , Transportadoras de Casetes de Unión a ATP/química , Proteínas de la Membrana Bacteriana Externa/química , Microscopía por Crioelectrón , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA