Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Immunity ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38876098

RESUMEN

Allogeneic T cell expansion is the primary determinant of graft-versus-host disease (GVHD), and current dogma dictates that this is driven by histocompatibility antigen disparities between donor and recipient. This paradigm represents a closed genetic system within which donor T cells interact with peptide-major histocompatibility complexes (MHCs), though clonal interrogation remains challenging due to the sparseness of the T cell repertoire. We developed a Bayesian model using donor and recipient T cell receptor (TCR) frequencies in murine stem cell transplant systems to define limited common expansion of T cell clones across genetically identical donor-recipient pairs. A subset of donor CD4+ T cell clonotypes differentially expanded in identical recipients and were microbiota dependent. Microbiota-specific T cells augmented GVHD lethality and could target microbial antigens presented by gastrointestinal epithelium during an alloreactive response. The microbiota serves as a source of cognate antigens that contribute to clonotypic T cell expansion and the induction of GVHD independent of donor-recipient genetics.

2.
PLoS One ; 19(6): e0303057, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38843256

RESUMEN

As adoptive cellular therapies become more commonplace in cancer care, there is a growing need to monitor site-specific localization of engineered cells-such as chimeric antigen receptor T (CAR-T) cells and T-cell receptor T (TCR-T) cells-in patients' tissues to understand treatment effectiveness as well as associated adverse events. Manufacturing CAR-T and TCR-T cells involves transduction with viral vectors commonly containing the WPRE gene sequence to enhance gene expression, providing a viable assay target unique to these engineered cells. Quantitative PCR (qPCR) is currently used clinically in fresh patient tissue samples and blood with target sequences specific to each immunotherapy product. Herein, we developed a WPRE-targeted qPCR assay that is broadly applicable for detection of engineered cell products in both fresh and archival formalin-fixed paraffin embedded (FFPE) tissues. Using both traditional PCR and SYBR Green PCR protocols, we demonstrate the use of this WPRE-targeted assay to successfully detect two CAR-T cell and two TCR-T cell products in FFPE tissue. Standard curve analysis reported a reproducible limit of detection at 100 WPRE copies per 20µL PCR reaction. This novel and inexpensive technique could provide better understanding of tissue abundance of engineered therapeutic T cells in both tumor and second-site toxicity tissues and provide quantitative assessment of immune effector cell trafficking in archival tissue.


Asunto(s)
Formaldehído , Virus de la Hepatitis B de la Marmota , Receptores de Antígenos de Linfocitos T , Humanos , Virus de la Hepatitis B de la Marmota/genética , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Fijación del Tejido/métodos , Inmunoterapia Adoptiva/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
3.
Blood ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683966

RESUMEN

Relapse is the leading cause of death after allogeneic hematopoietic stem cell transplantation (HCT) for leukemia. T cells engineered by gene transfer to express T cell receptors (TCR; TCR-T) specific for hematopoietic-restricted minor histocompatibility (H) antigens may provide a potent selective anti-leukemic effect post-HCT. We conducted a phase I clinical trial employing a novel TCR-T product targeting the minor H antigen HA-1 to treat or consolidate treatment of persistent or recurrent leukemia and myeloid neoplasms. The primary objective was to evaluate the feasibility and safety of administration of HA-1 TCR-T post-HCT. CD8+ and CD4+ T cells expressing the HA-1 TCR and a CD8-co-receptor were successfully manufactured from HA-1 disparate HCT donors. One or more infusions of HA-1 TCR-T following lymphodepleting chemotherapy were administered to nine HCT recipients who had developed disease recurrence post-HCT. TCR-T cells expanded and persisted in vivo after adoptive transfer. No dose-limiting toxicities occurred. Although the study was not designed to assess efficacy, four patients achieved or maintained complete remissions following lymphodepletion and HA-1 TCR-T, with one ongoing at >2 years. Single-cell RNA sequencing of relapsing/progressive leukemia after TCR-T therapy identified upregulated molecules associated with T cell dysfunction or cancer cell survival. HA-1 TCR-T therapy appears feasible and safe and shows preliminary signals of efficacy. This clinical trial is registered at clinicaltrials.gov as NCT03326921.

4.
Mol Ther ; 32(3): 563-564, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38340733
5.
Blood ; 143(3): 190-192, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236611
6.
J Immunother Cancer ; 11(12)2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38164756

RESUMEN

BACKGROUND: Myelodysplastic syndromes (MDS) arise from somatic mutations acquired in hematopoietic stem and progenitor cells, causing cytopenias and predisposing to transformation into secondary acute myeloid leukemia (sAML). Recurrent mutations in spliceosome genes, including U2AF1, are attractive therapeutic targets as they are prevalent in MDS and sAML, arise early in neoplastic cells, and are generally absent from normal cells, including normal hematopoietic cells. MDS and sAML are susceptible to T cell-mediated killing, and thus engineered T-cell immunotherapies hold promise for their treatment. We hypothesized that targeting spliceosome mutation-derived neoantigens with transgenic T-cell receptor (TCR) T cells would selectively eradicate malignant cells in MDS and sAML. METHODS: We identified candidate neoantigen epitopes from recurrent protein-coding mutations in the spliceosome genes SRSF2 and U2AF1 using a multistep in silico process. Candidate epitopes predicted to bind human leukocyte antigen (HLA) class I, be processed and presented from the parent protein, and not to be subject to tolerance then underwent in vitro immunogenicity screening. CD8+ T cells recognizing immunogenic neoantigen epitopes were evaluated in in vitro assays to assess functional avidity, confirm the predicted HLA restriction, the potential for recognition of similar peptides, and the ability to kill neoplastic cells in an antigen-specific manner. Neoantigen-specific TCR were sequenced, cloned into lentiviral vectors, and transduced into third-party T cells after knock-out of endogenous TCR, then tested in vitro for specificity and ability to kill neoplastic myeloid cells presenting the neoantigen. The efficacy of neoantigen-specific T cells was evaluated in vivo in a murine cell line-derived xenograft model. RESULTS: We identified two neoantigens created from a recurrent mutation in U2AF1, isolated CD8+ T cells specific for the neoantigens, and demonstrated that transferring their TCR to third-party CD8+ T cells is feasible and confers specificity for the U2AF1 neoantigens. Finally, we showed that these neoantigen-specific TCR-T cells do not recognize normal hematopoietic cells but efficiently kill malignant myeloid cells bearing the specific U2AF1 mutation, including primary cells, in vitro and in vivo. CONCLUSIONS: These data serve as proof-of-concept for developing precision medicine approaches that use neoantigen-directed T-cell receptor-transduced T cells to treat MDS and sAML.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Ratones , Animales , Linfocitos T CD8-positivos , Factor de Empalme U2AF/genética , Factor de Empalme U2AF/metabolismo , Antígenos de Neoplasias , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/terapia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/metabolismo , Epítopos/metabolismo
8.
Transplant Cell Ther ; 28(9): 530-545, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35717004

RESUMEN

The role of allogeneic hematopoietic stem cell transplantation (HCT) in the treatment of acute myelogenous leukemia (AML) in children is reviewed and critically evaluated in this evidence-based review. Specific criteria were used for searching the published literature, grading the quality and strength of evidence, and assigning the strength of treatment recommendations. Genomic characterization and response to therapy have been critical in the risk stratification of pediatric AML. Although some children are cured with chemotherapy alone, allogeneic HCT offers a survival benefit in selected patients with certain unfavorable risk features and is the standard of care for children who relapse following initial treatment with chemotherapy. Important aspects of HCT include recipient characteristics, donor source, and preparative regimen. The goals of HCT are to reduce incidence of relapse, enhance graft-versus-leukemia (GVL) effects, and minimize graft-versus-host disease. Relapse following HCT remains a significant cause of treatment failure, and interventions pre- and post-HCT, especially those that may augment GVL, are an important focus of ongoing investigations.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Niño , Humanos , Recurrencia , Acondicionamiento Pretrasplante , Trasplante Homólogo , Estados Unidos
9.
Leukemia ; 36(6): 1563-1574, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35440690

RESUMEN

There is long-standing interest in estimating non-relapse mortality (NRM) after allogeneic hematopoietic cell transplantation (HCT) for AML, but existing tools have limited discriminative capacity. Using single-institution data from 861 adults with AML, we retrospectively examined the Treatment-Related Mortality (TRM) score, originally developed to predict early mortality following induction chemotherapy, as a predictor of post-HCT outcome. NRM risks increased stepwise across the four TRM score quartiles (at 3 years: 9% [95% confidence interval: 5-13%] in Q1 vs. 28% [22-34%] in Q4). The 3-year risk of relapse was lower in patients with lower TRM score (26% [20-32%] in Q1 vs. 37% [30-43%] in Q4). Consequently, relapse-free survival (RFS) and overall survival (OS) estimates progressively decreased (RFS at 3 years: 66% [59-72%] in Q1 vs. 36% [29-42%] in Q4; OS at 3 years: 72% [66-78%] in Q1 vs. 39% [33-46%] in Q4). With a C-statistic of 0.661 (continuous variable) or 0.642 (categorized by quartile), the TRM score predicted NRM better than the Pretransplantation Assessment of Mortality (PAM) score (0.603) or the HCT-CI/age composite score (0.576). While post-HCT outcome prediction remains challenging, these findings suggest that the TRM score may be useful for risk stratification for adults with AML undergoing allogeneic HCT.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Adulto , Supervivencia sin Enfermedad , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Leucemia Mieloide Aguda/terapia , Pronóstico , Recurrencia , Estudios Retrospectivos , Acondicionamiento Pretrasplante , Trasplante Homólogo
10.
Sci Transl Med ; 14(631): eabg8070, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35138909

RESUMEN

Designing effective antileukemic immunotherapy will require understanding mechanisms underlying tumor control or resistance. Here, we report a mechanism of escape from immunologic targeting in an acute myeloid leukemia (AML) patient, who relapsed 1 year after immunotherapy with engineered T cells expressing a human leukocyte antigen A*02 (HLA-A2)-restricted T cell receptor (TCR) specific for a Wilms' tumor antigen 1 epitope, WT1126-134 (TTCR-C4). Resistance occurred despite persistence of functional therapeutic T cells and continuous expression of WT1 and HLA-A2 by the patient's AML cells. Analysis of the recurrent AML revealed expression of the standard proteasome, but limited expression of the immunoproteasome, specifically the beta subunit 1i (ß1i), which is required for presentation of WT1126-134. An analysis of a second patient treated with TTCR-C4 demonstrated specific loss of AML cells coexpressing ß1i and WT1. To determine whether the WT1 protein continued to be processed and presented in the absence of immunoproteasome processing, we identified and tested a TCR targeting an alternative, HLA-A2-restricted WT137-45 epitope that was generated by immunoproteasome-deficient cells, including WT1-expressing solid tumor lines. T cells expressing this TCR (TTCR37-45) killed the first patients' relapsed AML resistant to WT1126-134 targeting, as well as other primary AML, in vitro. TTCR37-45 controlled solid tumor lines lacking immunoproteasome subunits both in vitro and in an NSG mouse model. As proteasome composition can vary in AML, defining and preferentially targeting these proteasome-independent epitopes may maximize therapeutic efficacy and potentially circumvent AML immune evasion by proteasome-related immunoediting.


Asunto(s)
Leucemia Mieloide Aguda , Complejo de la Endopetidasa Proteasomal , Proteínas WT1 , Animales , Antígenos de Neoplasias , Epítopos , Antígeno HLA-A2 , Humanos , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/terapia , Ratones , Péptidos , Complejo de la Endopetidasa Proteasomal/inmunología , Complejo de la Endopetidasa Proteasomal/uso terapéutico , Receptores de Antígenos de Linfocitos T , Proteínas WT1/uso terapéutico
11.
J Clin Oncol ; 40(11): 1174-1185, 2022 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-35007144

RESUMEN

PURPOSE: Graft-versus-host disease (GVHD) causes morbidity and mortality following allogeneic hematopoietic cell transplantation. Naive T cells (TN) cause severe GVHD in murine models. We evaluated chronic GVHD (cGVHD) and other outcomes in three phase II clinical trials of TN-depletion of peripheral blood stem-cell (PBSC) grafts. METHODS: One hundred thirty-eight patients with acute leukemia received TN-depleted PBSC from HLA-matched related or unrelated donors following conditioning with high- or intermediate-dose total-body irradiation and chemotherapy. GVHD prophylaxis was with tacrolimus, with or without methotrexate or mycophenolate mofetil. Subjects received CD34-selected PBSC and a defined dose of memory T cells depleted of TN. Median follow-up was 4 years. The primary outcome of the analysis of cumulative data from the three trials was cGVHD. RESULTS: cGVHD was very infrequent and mild (3-year cumulative incidence total, 7% [95% CI, 2 to 11]; moderate, 1% [95% CI, 0 to 2]; severe, 0%). Grade III and IV acute GVHD (aGVHD) occurred in 4% (95% CI, 1 to 8) and 0%, respectively. The cumulative incidence of grade II aGVHD, which was mostly stage 1 upper gastrointestinal GVHD, was 71% (95% CI, 64 to 79). Recipients of matched related donor and matched unrelated donor grafts had similar rates of grade III aGVHD (5% [95% CI, 0 to 9] and 4% [95% CI, 0 to 9]) and cGVHD (7% [95% CI, 2 to 13] and 6% [95% CI, 0 to 12]). Overall survival, cGVHD-free, relapse-free survival, relapse, and nonrelapse mortality were, respectively, 77% (95% CI, 71 to 85), 68% (95% CI, 61 to 76), 23% (95% CI, 16 to 30), and 8% (95% CI, 3 to 13) at 3 years. CONCLUSION: Depletion of TN from PBSC allografts results in very low incidences of severe acute and any cGVHD, without apparent excess risks of relapse or nonrelapse mortality, distinguishing this novel graft engineering strategy from other hematopoietic cell transplantation approaches.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Humanos , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control , Trasplante de Células Madre Hematopoyéticas/métodos , Leucemia Mieloide Aguda/complicaciones , Recurrencia , Acondicionamiento Pretrasplante/métodos , Donante no Emparentado
12.
Blood ; 139(11): 1694-1706, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-34995355

RESUMEN

In acute myeloid leukemia (AML), measurable residual disease (MRD) before or after allogeneic hematopoietic cell transplantation (HCT) is an established independent indicator of poor outcome. To address how peri-HCT MRD dynamics could refine risk assessment across different conditioning intensities, we analyzed 810 adults transplanted in first or second remission after myeloablative conditioning (MAC; n = 515) or non-MAC (n = 295) who underwent multiparameter flow cytometry-based MRD testing before as well as 20 to 40 days after allografting. Patients without pre- and post-HCT MRD (MRDneg/MRDneg) had the lowest risks of relapse and highest relapse-free survival (RFS) and overall survival (OS). Relative to those patients, outcomes for MRDpos/MRDpos and MRDneg/MRDpos patients were poor regardless of conditioning intensity. Outcomes for MRDpos/MRDneg patients were intermediate. Among 161 patients with MRD before HCT, MRD was cleared more commonly with a MAC (85 of 104; 81.7%) than non-MAC (33 of 57; 57.9%) regimen (P = .002). Although non-MAC regimens were less likely to clear MRD, if they did, the impact on outcome was greater. Thus, there was a significant interaction between conditioning intensity and "MRD conversion" for relapse (P = .020), RFS (P = .002), and OS (P = .001). Similar findings were obtained in the subset of 590 patients receiving HLA-matched allografts. C-statistic values were higher (indicating higher predictive accuracy) for peri-HCT MRD dynamics compared with the isolated use of pre-HCT MRD status or post-HCT MRD status for prediction of relapse, RFS, and OS. Across conditioning intensities, peri-HCT MRD dynamics improve risk assessment over isolated pre- or post-HCT MRD assessments in patients with AML.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Adulto , Citometría de Flujo , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/etiología , Leucemia Mieloide Aguda/terapia , Neoplasia Residual/etiología , Estudios Retrospectivos , Acondicionamiento Pretrasplante
13.
Transplant Cell Ther ; 28(1): 21-29, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34644605

RESUMEN

Consolidative hematopoietic cell transplantation (HCT) after CD19 chimeric antigen receptor (CAR) T cell therapy is frequently performed for patients with refractory/ relapsed B cell acute lymphoblastic leukemia (B-ALL). However, there is controversy regarding the role of HCT following remission attainment. We evaluated the effect of consolidative HCT on leukemia-free survival (LFS) in pediatric and young adult subjects following CD19 CAR T cell induced remission. We evaluated the effect of consolidative HCT on LFS in pediatric and young adult subjects treated with a 41BB-CD19 CAR T cell product on a phase 1/2 trial, Pediatric and Young Adult Leukemia Adoptive Therapy (PLAT)-02 (ClinicalTrials.gov identifier NCT02028455), using a time-dependent Cox proportional hazards statistical model. Fifty of 64 subjects enrolled in PLAT-02 phase 1 and early phase 2 were evaluated, excluding 14 subjects who did not achieve remission, relapsed, or died before day 63 post-CAR T cell therapy. An improved LFS (P = .01) was observed in subjects who underwent consolidative HCT after CAR T cell therapy versus watchful waiting. Consolidative HCT improved LFS specifically in subjects who had no prior history of HCT, with a trend toward significance (P = .09). This benefit was not evident when restricted to the cohort of 34 subjects with a history of prior HCT (P = .45). However, for subjects who had CAR T cell functional persistence of 63 days or less, inclusive of those with a history of prior HCT, HCT significantly improved LFS outcomes (P = .01). These data support the use of consolidative HCT following CD19 CAR T cell-induced remission for patients with no prior history of HCT and those with short functional CAR T cell persistence.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Antígenos CD19 , Niño , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Linfocitos T
14.
Curr Opin Hematol ; 28(6): 373-379, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34508031

RESUMEN

PURPOSE OF REVIEW: To discuss the curative potential for chimeric antigen receptor T-cell (CAR-T) therapy, with or without consolidative hematopoietic stem cell transplantation (HCT) in the treatment of children and young adults with B lineage acute lymphoblastic leukemia (B-ALL). RECENT FINDINGS: CAR-T targeting CD19 can induce durable remissions and prolong life in patients with relapsed/refractory B-ALL. Whether HCT is needed to consolidate remission and cure relapse/refractory B-ALL following a CD19 CAR-T induced remission remains controversial. Preliminary evidence suggests that consolidative HCT following CAR-T in HCT-naïve children improves leukemia-free survival. However, avoiding HCT-related late effects is a desirable goal, so identification of patients at high risk of relapse is needed to appropriately direct those patients to HCT when necessary, while avoiding HCT in others. High disease burden prior to CAR-T infusion, loss of B-cell aplasia and detection of measurable residual disease by flow cytometry or next-generation sequencing following CAR-T therapy associate with a higher relapse risk and may identify patients requiring consolidative HCT for relapse prevention. SUMMARY: There is a pressing need to determine when CD19 CAR-T alone is likely to be curative and when a consolidative HCT will be required. We discuss the current state of knowledge and future directions.


Asunto(s)
Inmunoterapia Adoptiva , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Antígenos CD19/inmunología , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfocitos T/genética , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Linfocitos T/trasplante
15.
Nat Commun ; 12(1): 490, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33473122

RESUMEN

Short H2A (sH2A) histone variants are primarily expressed in the testes of placental mammals. Their incorporation into chromatin is associated with nucleosome destabilization and modulation of alternate splicing. Here, we show that sH2As innately possess features similar to recurrent oncohistone mutations associated with nucleosome instability. Through analyses of existing cancer genomics datasets, we find aberrant sH2A upregulation in a broad array of cancers, which manifest splicing patterns consistent with global nucleosome destabilization. We posit that short H2As are a class of "ready-made" oncohistones, whose inappropriate expression contributes to chromatin dysfunction in cancer.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Empalme Alternativo , Animales , Cromatina , Epigenómica , Femenino , Genómica , Humanos , Nucleosomas , Placenta , Embarazo , Regulación hacia Arriba
16.
J Immunol Methods ; 492: 112955, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33383062

RESUMEN

Identifying engineered T cells in situ is important to understand the location, persistence, and phenotype of these cells in patients after adoptive T cell therapy. While engineered cells are routinely characterized in fresh tissue or blood from patients by flow cytometry, it is difficult to distinguish them from endogenous cells in formalin-fixed, paraffin-embedded (FFPE) tissue biopsies. To overcome this limitation, we have developed a method for characterizing engineered T cells in fixed tissue using in situ hybridization (ISH) to the woodchuck hepatitis post-transcriptional regulatory element (WPRE) common in many lentiviral vectors used to transduce chimeric antigen receptor T (CAR-T) and T cell receptor T (TCR-T) cells, coupled with alternative permeabilization conditions that allows subsequent multiplex immunohistochemical (mIHC) staining within the same image. This new method provides the ability to mark the cells by ISH, and simultaneously stain for cell-associated proteins to immunophenotype CAR/TCR modified T cells within tumors, as well as assess potential roles of these cells in on-target/off-tumor toxicity in other tissue.


Asunto(s)
Inmunohistoquímica/métodos , Inmunofenotipificación/métodos , Receptores Quiméricos de Antígenos/análisis , Linfocitos T/inmunología , Animales , Biopsia , Ingeniería Celular , Técnicas de Cocultivo , Vectores Genéticos/genética , Virus de la Hepatitis B de la Marmota/genética , Humanos , Hibridación Fluorescente in Situ , Lentivirus/genética , Ganglios Linfáticos/patología , Masculino , Ratones , Ratones Transgénicos , Modelos Animales , Adhesión en Parafina , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología , Piel/citología , Piel/inmunología , Piel/patología , Linfocitos T/metabolismo , Linfocitos T/trasplante , Fijación del Tejido , Transducción Genética , Quimera por Trasplante
17.
Blood Adv ; 4(19): 4980, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33049057

RESUMEN

Allogeneic hematopoietic stem cell transplantation (HCT) is curative in many patients with advanced hematopoietic malignancies. Donor T cells not only facilitate engraftment and protect against opportunistic pathogens and residual disease, but can also cause graft-versus-host disease (GVHD), with significant morbidity and mortality. Complete T-cell depletion can not only substantially reduce GVHD rates but can also delay immune reconstitution and increase rates of opportunistic infections and relapse. Murine models have shown that naive T cells (TNs) consistently cause severe GVHD, whereas memory T cells cause milder or no GVHD and have critical graft-versus-tumor function. Informed by experiments performed in murine models of HCT, clinical trials are being conducted to evaluate TN-depleted peripheral blood stem cell (PBSC) grafts. These trials are showing very low rates of chronic GVHD and of serious acute GVHD in the HLA-matched HCT setting, with lower frequencies of opportunistic infections than after fully T-cell-depleted HCT and no apparent increase in relapse rates. Randomized clinical trials are ongoing, comparing standard unselected HCT with TN-depleted PBSCs and other promising GVHD-reduction strategies. Correlative laboratory studies will clarify how antitumor function is retained in TN-depleted HCT and inform strategies to further augment graft-versus-leukemia in patients at a high risk of relapse. TN depletion of donor lymphocyte infusions and of haploidentical stem cell grafts is also being investigated.


Asunto(s)
Enfermedad Injerto contra Huésped , Neoplasias Hematológicas , Trasplante de Células Madre Hematopoyéticas , Animales , Enfermedad Injerto contra Huésped/etiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Depleción Linfocítica , Ratones , Linfocitos T
18.
J Clin Invest ; 130(10): 5127-5141, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32831296

RESUMEN

Proteins created from recurrent fusion genes like CBFB-MYH11 are prevalent in acute myeloid leukemia (AML), often necessary for leukemogenesis, persistent throughout the disease course, and highly leukemia specific, making them attractive neoantigen targets for immunotherapy. A nonameric peptide derived from a prevalent CBFB-MYH11 fusion protein was found to be immunogenic in HLA-B*40:01+ donors. High-avidity CD8+ T cell clones isolated from healthy donors killed CBFB-MYH11+ HLA-B*40:01+ AML cell lines and primary human AML samples in vitro. CBFB-MYH11-specific T cells also controlled CBFB-MYH11+ HLA-B*40:01+ AML in vivo in a patient-derived murine xenograft model. High-avidity CBFB-MYH11 epitope-specific T cell receptors (TCRs) transduced into CD8+ T cells conferred antileukemic activity in vitro. Our data indicate that the CBFB-MYH11 fusion neoantigen is naturally presented on AML blasts and enables T cell recognition and killing of AML. We provide proof of principle for immunologically targeting AML-initiating fusions and demonstrate that targeting neoantigens has clinical relevance even in low-mutational frequency cancers like fusion-driven AML. This work also represents a first critical step toward the development of TCR T cell immunotherapy targeting fusion gene-driven AML.


Asunto(s)
Leucemia Mieloide Aguda , Animales , Carcinogénesis , Subunidad beta del Factor de Unión al Sitio Principal/genética , Humanos , Leucocitos , Ratones , Mutación , Cadenas Pesadas de Miosina/genética , Proteínas de Fusión Oncogénica/genética
19.
Front Pediatr ; 8: 284, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582592

RESUMEN

Minor Histocompatibility (H) antigens are major histocompatibility complex (MHC)/Human Leukocyte Antigen (HLA)-bound peptides that differ between allogeneic hematopoietic stem cell transplantation (HCT) recipients and their donors as a result of genetic polymorphisms. Some minor H antigens can be used as therapeutic T cell targets to augment the graft-vs.-leukemia (GVL) effect in order to prevent or manage leukemia relapse after HCT. Graft engineering and post-HCT immunotherapies are being developed to optimize delivery of T cells specific for selected minor H antigens. These strategies have the potential to reduce relapse risk and thereby permit implementation of HCT approaches that are associated with less toxicity and fewer late effects, which is particularly important in the growing and developing pediatric patient. Most minor H antigens are expressed ubiquitously, including on epithelial tissues, and can be recognized by donor T cells following HCT, leading to graft-vs.-host disease (GVHD) as well as GVL. However, those minor H antigens that are expressed predominantly on hematopoietic cells can be targeted for selective GVL. Once full donor hematopoietic chimerism is achieved after HCT, hematopoietic-restricted minor H antigens are present only on residual recipient malignant hematopoietic cells, and these minor H antigens serve as tumor-specific antigens for donor T cells. Minor H antigen-specific T cells that are delivered as part of the donor hematopoietic stem cell graft at the time of HCT contribute to relapse prevention. However, in some cases the minor H antigen-specific T cells delivered with the graft may be quantitatively insufficient or become functionally impaired over time, leading to leukemia relapse. Following HCT, adoptive T cell immunotherapy can be used to treat or prevent relapse by delivering large numbers of donor T cells targeting hematopoietic-restricted minor H antigens. In this review, we discuss minor H antigens as T cell targets for augmenting the GVL effect in engineered HCT grafts and for post-HCT immunotherapy. We will highlight the importance of these developments for pediatric HCT.

20.
JCI Insight ; 5(9)2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32376800

RESUMEN

Protection from relapse after allogeneic hematopoietic cell transplantation (HCT) is partly due to donor T cell-mediated graft-versus-leukemia (GVL) immune responses. Relapse remains common in HCT recipients, but strategies to augment GVL could significantly improve outcomes after HCT. Donor T cells with αß T cell receptors (TCRs) mediate GVL through recognition of minor histocompatibility antigens and alloantigens in HLA-matched and -mismatched HCT, respectively. αß T cells specific for other leukemia-associated antigens, including nonpolymorphic antigens and neoantigens, may also deliver an antileukemic effect. γδ T cells may contribute to GVL, although their biology and specificity are less well understood. Vaccination or adoptive transfer of donor-derived T cells with natural or transgenic receptors are strategies with potential to selectively enhance αß and γδ T cell GVL effects.


Asunto(s)
Efecto Injerto vs Leucemia/inmunología , Trasplante de Células Madre Hematopoyéticas/métodos , Antígenos de Histocompatibilidad Menor/inmunología , Linfocitos T , Adulto , Línea Celular , Niño , Refuerzo Inmunológico de Injertos , Humanos , Linfocitos T/citología , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...