Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Mol Cell ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39303720

RESUMEN

Cys2-His2 zinc-finger proteins (C2H2-ZNFs) constitute the largest class of DNA-binding transcription factors (TFs) yet remain largely uncharacterized. Although certain family members, e.g., GTF3A, have been shown to bind both DNA and RNA, the extent to which C2H2-ZNFs interact with-and regulate-RNA-associated processes is not known. Using UV crosslinking and immunoprecipitation (CLIP), we observe that 148 of 150 analyzed C2H2-ZNFs bind directly to RNA in human cells. By integrating CLIP sequencing (CLIP-seq) RNA-binding maps for 50 of these C2H2-ZNFs with data from chromatin immunoprecipitation sequencing (ChIP-seq), protein-protein interaction assays, and transcriptome profiling experiments, we observe that the RNA-binding profiles of C2H2-ZNFs are generally distinct from their DNA-binding preferences and that they regulate a variety of post-transcriptional processes, including pre-mRNA splicing, cleavage and polyadenylation, and m6A modification of mRNA. Our results thus define a substantially expanded repertoire of C2H2-ZNFs that bind RNA and provide an important resource for elucidating post-transcriptional regulatory programs.

2.
Genome Biol ; 25(1): 246, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300486

RESUMEN

BACKGROUND: N6-methyladenosine (m6A), the most abundant internal modification on eukaryotic mRNA, and N6, 2'-O-dimethyladenosine (m6Am), are epitranscriptomic marks that function in multiple aspects of posttranscriptional regulation. Fat mass and obesity-associated protein (FTO) can remove both m6A and m6Am; however, little is known about how FTO achieves its substrate selectivity. RESULTS: Here, we demonstrate that ZBTB48, a C2H2-zinc finger protein that functions in telomere maintenance, associates with FTO and binds both mRNA and the telomere-associated regulatory RNA TERRA to regulate the functional interactions of FTO with target transcripts. Specifically, depletion of ZBTB48 affects targeting of FTO to sites of m6A/m6Am modification, changes cellular m6A/m6Am levels and, consequently, alters decay rates of target RNAs. ZBTB48 ablation also accelerates growth of HCT-116 colorectal cancer cells and modulates FTO-dependent regulation of Metastasis-associated protein 1 (MTA1) transcripts by controlling the binding to MTA1 mRNA of the m6A reader IGF2BP2. CONCLUSIONS: Our findings thus uncover a previously unknown mechanism of posttranscriptional regulation in which ZBTB48 co-ordinates RNA-binding of the m6A/m6Am demethylase FTO to control expression of its target RNAs.


Asunto(s)
Adenosina , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Células HCT116 , ARN Mensajero/metabolismo , ARN Mensajero/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Telómero/metabolismo , Telómero/genética , Dedos de Zinc
3.
Nat Commun ; 15(1): 6328, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068192

RESUMEN

Disruption of alternative splicing frequently causes or contributes to human diseases and disorders. Consequently, there is a need for efficient and sensitive reporter assays capable of screening chemical libraries for compounds with efficacy in modulating important splicing events. Here, we describe a screening workflow employing dual Nano and Firefly luciferase alternative splicing reporters that affords efficient, sensitive, and linear detection of small molecule responses. Applying this system to a screen of ~95,000 small molecules identified compounds that stimulate or repress the splicing of neuronal microexons, a class of alternative exons often disrupted in autism and activated in neuroendocrine cancers. One of these compounds rescues the splicing of several analyzed microexons in the cerebral cortex of an autism mouse model haploinsufficient for Srrm4, a major activator of brain microexons. We thus describe a broadly applicable high-throughput screening system for identifying candidate splicing therapeutics, and a resource of small molecule modulators of microexons with potential for further development in correcting aberrant splicing patterns linked to human disorders and disease.


Asunto(s)
Empalme Alternativo , Exones , Genes Reporteros , Ensayos Analíticos de Alto Rendimiento , Luciferasas de Luciérnaga , Bibliotecas de Moléculas Pequeñas , Animales , Empalme Alternativo/efectos de los fármacos , Humanos , Ensayos Analíticos de Alto Rendimiento/métodos , Ratones , Exones/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Luciferasas de Luciérnaga/genética , Luciferasas de Luciérnaga/metabolismo , Células HEK293 , Corteza Cerebral/metabolismo , Corteza Cerebral/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de los fármacos
4.
Proc Natl Acad Sci U S A ; 121(32): e2404146121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39074278

RESUMEN

Cell-matrix interactions in 3D environments significantly differ from those in 2D cultures. As such, mechanisms of mechanotransduction in 2D cultures are not necessarily applicable to cell-encapsulating hydrogels that resemble features of tissue architecture. Accordingly, the characterization of molecular pathways in 3D matrices is expected to uncover insights into how cells respond to their mechanical environment in physiological contexts, and potentially also inform hydrogel-based strategies in cell therapies. In this study, a bone marrow-mimetic hydrogel was employed to systematically investigate the stiffness-responsive transcriptome of mesenchymal stromal cells. High matrix rigidity impeded integrin-collagen adhesion, resulting in changes in cell morphology characterized by a contractile network of actin proximal to the cell membrane. This resulted in a suppression of extracellular matrix-regulatory genes involved in the remodeling of collagen fibrils, as well as the upregulation of secreted immunomodulatory factors. Moreover, an investigation of long noncoding RNAs revealed that the cytoskeleton regulator RNA (CYTOR) contributes to these 3D stiffness-driven changes in gene expression. Knockdown of CYTOR using antisense oligonucleotides enhanced the expression of numerous mechanoresponsive cytokines and chemokines to levels exceeding those achievable by modulating matrix stiffness alone. Taken together, our findings further our understanding of mechanisms of mechanotransduction that are distinct from canonical mechanotransductive pathways observed in 2D cultures.


Asunto(s)
Matriz Extracelular , Mecanotransducción Celular , Células Madre Mesenquimatosas , ARN Largo no Codificante , Humanos , Células Madre Mesenquimatosas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Matriz Extracelular/metabolismo , Hidrogeles/química , Regulación de la Expresión Génica , Colágeno/metabolismo , Células Cultivadas , Inmunomodulación/genética
5.
Mol Cell ; 84(13): 2573-2589.e5, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38917795

RESUMEN

Efficient targeted control of splicing is a major goal of functional genomics and therapeutic applications. Guide (g)RNA-directed, deactivated (d)Cas CRISPR enzymes fused to splicing effectors represent a promising strategy due to the flexibility of these systems. However, efficient, specific, and generalizable activation of endogenous exons using this approach has not been previously reported. By screening over 300 dCasRx-splicing factor fusion proteins tethered to splicing reporters, we identify dCasRx-RBM25 as a potent activator of exons. Moreover, dCasRx-RBM25 efficiently activates the splicing of ∼90% of targeted endogenous alternative exons and displays high on-target specificity. Using gRNA arrays for combinatorial targeting, we demonstrate that dCasRx-RBM25 enables multiplexed activation and repression of exons. Using this feature, the targeting of neural-regulated exons in Ptpb1 and Puf60 in embryonic stem cells reveals combinatorial effects on downstream alternative splicing events controlled by these factors. Collectively, our results enable versatile, combinatorial exon-resolution functional assays and splicing-directed therapeutic applications.


Asunto(s)
Empalme Alternativo , Sistemas CRISPR-Cas , Exones , Factores de Empalme de ARN , Proteínas de Unión al ARN , Humanos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Células HEK293 , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Animales , Ratones
6.
Nucleic Acids Res ; 52(8): 4483-4501, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587191

RESUMEN

Messenger RNA precursors (pre-mRNA) generally undergo 3' end processing by cleavage and polyadenylation (CPA), which is specified by a polyadenylation site (PAS) and adjacent RNA sequences and regulated by a large variety of core and auxiliary CPA factors. To date, most of the human CPA factors have been discovered through biochemical and proteomic studies. However, genetic identification of the human CPA factors has been hampered by the lack of a reliable genome-wide screening method. We describe here a dual fluorescence readthrough reporter system with a PAS inserted between two fluorescent reporters. This system enables measurement of the efficiency of 3' end processing in living cells. Using this system in combination with a human genome-wide CRISPR/Cas9 library, we conducted a screen for CPA factors. The screens identified most components of the known core CPA complexes and other known CPA factors. The screens also identified CCNK/CDK12 as a potential core CPA factor, and RPRD1B as a CPA factor that binds RNA and regulates the release of RNA polymerase II at the 3' ends of genes. Thus, this dual fluorescence reporter coupled with CRISPR/Cas9 screens reliably identifies bona fide CPA factors and provides a platform for investigating the requirements for CPA in various contexts.


Asunto(s)
Sistemas CRISPR-Cas , Genes Reporteros , Precursores del ARN , Factores de Escisión y Poliadenilación de ARNm , Humanos , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/genética , Genoma Humano , Células HEK293 , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Poliadenilación , División del ARN , ARN Polimerasa II/metabolismo , Precursores del ARN/metabolismo , Precursores del ARN/genética
8.
Mol Cell ; 83(23): 4222-4238.e10, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38065061

RESUMEN

Alternative splicing significantly expands biological complexity, particularly in the vertebrate nervous system. Increasing evidence indicates that developmental and tissue-dependent alternative exons often control protein-protein interactions; yet, only a minor fraction of these events have been characterized. Using affinity purification-mass spectrometry (AP-MS), we show that approximately 60% of analyzed neural-differential exons in proteins previously implicated in transcriptional regulation result in the gain or loss of interaction partners, which in some cases form unexpected links with coupled processes. Notably, a neural exon in Chtop regulates its interaction with the Prmt1 methyltransferase and DExD-Box helicases Ddx39b/a, affecting its methylation and activity in promoting RNA export. Additionally, a neural exon in Sap30bp affects interactions with RNA processing factors, modulating a critical function of Sap30bp in promoting the splicing of <100 nt "mini-introns" that control nuclear RNA levels. AP-MS is thus a powerful approach for elucidating the multifaceted functions of proteins imparted by context-dependent alternative exons.


Asunto(s)
Empalme Alternativo , Empalme del ARN , Exones/genética , Intrones , ARN
10.
Nat Cell Biol ; 25(4): 592-603, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37059883

RESUMEN

Cells respond to perturbations such as inflammation by sensing changes in metabolite levels. Especially prominent is arginine, which has known connections to the inflammatory response. Aminoacyl-tRNA synthetases, enzymes that catalyse the first step of protein synthesis, can also mediate cell signalling. Here we show that depletion of arginine during inflammation decreased levels of nuclear-localized arginyl-tRNA synthetase (ArgRS). Surprisingly, we found that nuclear ArgRS interacts and co-localizes with serine/arginine repetitive matrix protein 2 (SRRM2), a spliceosomal and nuclear speckle protein, and that decreased levels of nuclear ArgRS correlated with changes in condensate-like nuclear trafficking of SRRM2 and splice-site usage in certain genes. These splice-site usage changes cumulated in the synthesis of different protein isoforms that altered cellular metabolism and peptide presentation to immune cells. Our findings uncover a mechanism whereby an aminoacyl-tRNA synthetase cognate to a key amino acid that is metabolically controlled during inflammation modulates the splicing machinery.


Asunto(s)
Aminoacil-ARNt Sintetasas , Arginino-ARNt Ligasa , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Arginina/química , Arginina/genética , Arginina/metabolismo , Arginino-ARNt Ligasa/química , Arginino-ARNt Ligasa/genética , Arginino-ARNt Ligasa/metabolismo , Empalme del ARN , Proteínas de Unión al ARN/metabolismo
11.
Nat Biotechnol ; 41(12): 1776-1786, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36959352

RESUMEN

An average shotgun proteomics experiment detects approximately 10,000 human proteins from a single sample. However, individual proteins are typically identified by peptide sequences representing a small fraction of their total amino acids. Hence, an average shotgun experiment fails to distinguish different protein variants and isoforms. Deeper proteome sequencing is therefore required for the global discovery of protein isoforms. Using six different human cell lines, six proteases, deep fractionation and three tandem mass spectrometry fragmentation methods, we identify a million unique peptides from 17,717 protein groups, with a median sequence coverage of approximately 80%. Direct comparison with RNA expression data provides evidence for the translation of most nonsynonymous variants. We have also hypothesized that undetected variants likely arise from mutation-induced protein instability. We further observe comparable detection rates for exon-exon junction peptides representing constitutive and alternative splicing events. Our dataset represents a resource for proteoform discovery and provides direct evidence that most frame-preserving alternatively spliced isoforms are translated.


Asunto(s)
Empalme Alternativo , Proteoma , Humanos , Proteoma/genética , Proteoma/metabolismo , Isoformas de Proteínas/genética , Empalme Alternativo/genética , Péptidos/química , Secuencia de Aminoácidos
12.
Sci Rep ; 13(1): 5238, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002329

RESUMEN

Thousands of RNA-binding proteins (RBPs) crosslink to cellular mRNA. Among these are numerous unconventional RBPs (ucRBPs)-proteins that associate with RNA but lack known RNA-binding domains (RBDs). The vast majority of ucRBPs have uncharacterized RNA-binding specificities. We analyzed 492 human ucRBPs for intrinsic RNA-binding in vitro and identified 23 that bind specific RNA sequences. Most (17/23), including 8 ribosomal proteins, were previously associated with RNA-related function. We identified the RBDs responsible for sequence-specific RNA-binding for several of these 23 ucRBPs and surveyed whether corresponding domains from homologous proteins also display RNA sequence specificity. CCHC-zf domains from seven human proteins recognized specific RNA motifs, indicating that this is a major class of RBD. For Nudix, HABP4, TPR, RanBP2-zf, and L7Ae domains, however, only isolated members or closely related homologs yielded motifs, consistent with RNA-binding as a derived function. The lack of sequence specificity for most ucRBPs is striking, and we suggest that many may function analogously to chromatin factors, which often crosslink efficiently to cellular DNA, presumably via indirect recruitment. Finally, we show that ucRBPs tend to be highly abundant proteins and suggest their identification in RNA interactome capture studies could also result from weak nonspecific interactions with RNA.


Asunto(s)
Proteínas de Unión al ARN , ARN , Humanos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Proteínas Ribosómicas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Motivos de Unión al ARN/genética , Unión Proteica , Factores Reguladores Miogénicos/metabolismo
13.
Heliyon ; 9(1): e12744, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36597481

RESUMEN

SARS-CoV-2 depends on host cell components for infection and replication. Identification of virus-host dependencies offers an effective way to elucidate mechanisms involved in viral infection and replication. If druggable, host factor dependencies may present an attractive strategy for anti-viral therapy. In this study, we performed genome wide CRISPR knockout screens in Vero E6 cells and four human cell lines including Calu-3, UM-UC-4, HEK-293 and HuH-7 to identify genetic regulators of SARS-CoV-2 infection. Our findings identified only ACE2, the cognate SARS-CoV-2 entry receptor, as a common host dependency factor across all cell lines, while other host genes identified were largely cell line specific, including known factors TMPRSS2 and CTSL. Several of the discovered host-dependency factors converged on pathways involved in cell signalling, immune-related pathways, and chromatin modification. Notably, the chromatin modifier gene KMT2C in Calu-3 cells had the strongest impact in preventing SARS-CoV-2 infection when perturbed.

14.
Mol Cell ; 82(17): 3135-3150.e9, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35914531

RESUMEN

Alternative polyadenylation (APA) enhances gene regulatory potential by increasing the diversity of mRNA transcripts. 3' UTR shortening through APA correlates with enhanced cellular proliferation and is a widespread phenomenon in tumor cells. Here, we show that the ubiquitously expressed transcription factor Sp1 binds RNA in vivo and is a common repressor of distal poly(A) site usage. RNA sequencing identified 2,344 genes (36% of the total mapped mRNA transcripts) with lengthened 3' UTRs upon Sp1 depletion. Sp1 preferentially binds the 3' UTRs of such lengthened transcripts and inhibits cleavage at distal sites by interacting with the subunits of the core cleavage and polyadenylation (CPA) machinery. The 3' UTR lengths of Sp1 target genes in breast cancer patient RNA-seq data correlate with Sp1 expression levels, implicating Sp1-mediated APA regulation in modulating tumorigenic properties. Taken together, our findings provide insights into the mechanism for dynamic APA regulation by unraveling a previously unknown function of the DNA-binding transcription factor Sp1.


Asunto(s)
Poli A , Poliadenilación , Regiones no Traducidas 3' , Humanos , Poli A/metabolismo , ARN Mensajero/metabolismo , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Zinc/metabolismo
15.
Mol Cell ; 82(16): 2982-2999.e14, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35914530

RESUMEN

Alternative splicing (AS) is a critical regulatory layer; yet, factors controlling functionally coordinated splicing programs during developmental transitions are poorly understood. Here, we employ a screening strategy to identify factors controlling dynamic splicing events important for mammalian neurogenesis. Among previously unknown regulators, Rbm38 acts widely to negatively control neural AS, in part through interactions mediated by the established repressor of splicing, Ptbp1. Puf60, a ubiquitous factor, is surprisingly found to promote neural splicing patterns. This activity requires a conserved, neural-differential exon that remodels Puf60 co-factor interactions. Ablation of this exon rewires distinct AS networks in embryonic stem cells and at different stages of mouse neurogenesis. Single-cell transcriptome analyses further reveal distinct roles for Rbm38 and Puf60 isoforms in establishing neuronal identity. Our results describe important roles for previously unknown regulators of neurogenesis and establish how an alternative exon in a widely expressed splicing factor orchestrates temporal control over cell differentiation.


Asunto(s)
Neurogénesis , Empalme del ARN , Empalme Alternativo , Animales , Exones/genética , Mamíferos , Ratones , Neurogénesis/genética , Neuronas , Proteínas de Unión al ARN/genética
16.
Nucleic Acids Res ; 50(9): 5313-5334, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35544276

RESUMEN

Alternative splicing is critical for development; however, its role in the specification of the three embryonic germ layers is poorly understood. By performing RNA-Seq on human embryonic stem cells (hESCs) and derived definitive endoderm, cardiac mesoderm, and ectoderm cell lineages, we detect distinct alternative splicing programs associated with each lineage. The most prominent splicing program differences are observed between definitive endoderm and cardiac mesoderm. Integrative multi-omics analyses link each program with lineage-enriched RNA binding protein regulators, and further suggest a widespread role for Quaking (QKI) in the specification of cardiac mesoderm. Remarkably, knockout of QKI disrupts the cardiac mesoderm-associated alternative splicing program and formation of myocytes. These changes arise in part through reduced expression of BIN1 splice variants linked to cardiac development. Mechanistically, we find that QKI represses inclusion of exon 7 in BIN1 pre-mRNA via an exonic ACUAA motif, and this is concomitant with intron removal and cleavage from chromatin. Collectively, our results uncover alternative splicing programs associated with the three germ lineages and demonstrate an important role for QKI in the formation of cardiac mesoderm.


Asunto(s)
Empalme Alternativo , Linaje de la Célula , Estratos Germinativos , Proteínas de Unión al ARN/metabolismo , Diferenciación Celular , Endodermo , Corazón , Humanos , Mesodermo
17.
Mol Cell ; 82(5): 1035-1052.e9, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35182477

RESUMEN

The nucleus is highly compartmentalized through the formation of distinct classes of membraneless domains. However, the composition and function of many of these structures are not well understood. Using APEX2-mediated proximity labeling and RNA sequencing, we surveyed human transcripts associated with nuclear speckles, several additional domains, and the lamina. Remarkably, speckles and lamina are associated with distinct classes of retained introns enriched in genes that function in RNA processing, translation, and the cell cycle, among other processes. In contrast to the lamina-proximal introns, retained introns associated with speckles are relatively short, GC-rich, and enriched for functional sites of RNA-binding proteins that are concentrated in these domains. They are also highly differentially regulated across diverse cellular contexts, including the cell cycle. Thus, our study provides a resource of nuclear domain-associated transcripts and further reveals speckles and lamina as hubs of distinct populations of retained introns linked to gene regulation and cell cycle progression.


Asunto(s)
Núcleo Celular , Proteínas de Unión al ARN , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulación de la Expresión Génica , Humanos , Intrones/genética , Empalme del ARN , Proteínas de Unión al ARN/genética
18.
iScience ; 25(1): 103562, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34901782

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N) protein is essential for viral replication, making it a promising target for antiviral drug and vaccine development. SARS-CoV-2 infected patients exhibit an uncoordinated immune response; however, the underlying mechanistic details of this imbalance remain obscure. Here, starting from a functional proteomics workflow, we cataloged the protein-protein interactions of SARS-CoV-2 proteins, including an evolutionarily conserved specific interaction of N with the stress granule resident proteins G3BP1 and G3BP2. N localizes to stress granules and sequesters G3BPs away from their typical interaction partners, thus attenuating stress granule formation. We found that N binds directly to host mRNAs in cells, with a preference for 3' UTRs, and modulates target mRNA stability. We show that the N protein rewires the G3BP1 mRNA-binding profile and suppresses the physiological stress response of host cells, which may explain the imbalanced immune response observed in SARS-CoV-2 infected patients.

20.
Nat Protoc ; 16(10): 4766-4798, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34508259

RESUMEN

The continued improvement of combinatorial CRISPR screening platforms necessitates the development of new computational pipelines for scoring combinatorial screening data. Unlike for single-guide RNA (sgRNA) pooled screening platforms, combinatorial scoring for multiplexed systems is confounded by guide design parameters such as the number of gRNAs per construct, the position of gRNAs along constructs, and additional features that may impact gRNA expression, processing or capture. In this protocol we describe Orthrus, an R package for processing, scoring and analyzing combinatorial CRISPR screening data that addresses these challenges. This protocol walks through the application of Orthrus to previously published combinatorial screening data from the CHyMErA experimental system, a platform we recently developed that pairs Cas9 with Cas12a gRNAs and enables programmed targeting of multiple genomic sites. We demonstrate Orthrus' features for screen quality assessment and two distinct scoring modes for dual guide RNAs (dgRNAs) that target the same gene twice or dgRNAs that target two different genes. Running Orthrus requires basic R programming experience, ~5-10 min of computational time and 15-60 min total.


Asunto(s)
Sistemas CRISPR-Cas , ARN Guía de Kinetoplastida , Edición Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...