RESUMEN
Cancer cells frequently display defects in their antigen-processing pathway and thereby evade CD8 T cell immunity. We described a novel category of cancer antigens, named TEIPP, that emerge on cancers with functional loss of the peptide pump TAP. TEIPPs are non-mutated neoantigens despite their 'self' origin by virtue of their absence on normal tissues. Here, we describe the development of a synthetic long peptide (SLP) vaccine for the most immunogenic TEIPP antigen identified thus far, derived from the TAP-independent LRPAP1 signal sequence. LRPAP121-30-specific CD8 T cells were present in blood of all tested healthy donors as well as patients with non-small cell lung adenocarcinoma. SLPs with natural flanking, however, failed to be cross-presented by monocyte-derived dendritic cells. Since the C-terminus of LRPAP121-30 is an unconventional and weakly binding serine (S), we investigated if replacement of this anchor would result in efficient cross-presentation. Exchange into a valine (V) resulted in higher HLA-A2 binding affinity and enhanced T cell stimulation. Importantly, CD8 T cells isolated using the V-variant were able to bind tetramers with the natural S-variant and respond to TAP-deficient cancer cells. A functional screen with an array of N-terminal and C-terminal extended SLPs pointed at the 24-mer V-SLP, elongated at the N-terminus, as most optimal vaccine candidate. This SLP was efficiently cross-presented and consistently induced a strong polyclonal LRPAP121-30-specific CD8 T cells from the endogenous T cell repertoire. Thus, we designed a TEIPP SLP vaccine from the LRPAP1 signal sequence ready for validation in clinical trials.
Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2/metabolismo , Adenocarcinoma del Pulmón/inmunología , Linfocitos T CD8-positivos/inmunología , Reactividad Cruzada , Neoplasias Pulmonares/inmunología , Fragmentos de Péptidos/farmacología , Linfocitos T Citotóxicos/inmunología , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Presentación de Antígeno/inmunología , Antígenos de Neoplasias , Células Dendríticas/inmunología , Epítopos de Linfocito T/inmunología , Antígeno HLA-A2/inmunología , Humanos , Proteína Asociada a Proteínas Relacionadas con Receptor de LDL/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Señales de Clasificación de Proteína , Células Tumorales Cultivadas , Escape del TumorRESUMEN
About 10-15% of couples who want to conceive suffer from subfertility, while in 30% of these cases, a male factor plays a role. Levels of particular microRNAs in seminal plasma, including those involved in spermatogenesis, may serve as an indicative parameter for subfertility. We first optimized a protocol for acquiring microRNAs from seminal plasma. Next, using a test-validation strategy in a male cohort, we aimed to identify microRNAs of which the levels are related to semen motility and concentration. By qPCR, 742 microRNAs were profiled in three normozoospermic samples, three seminal samples with a low semen motility (asthenozoospermia), and three with a low semen concentration (oligozoospermia). MicroRNAs showing significant differences between groups were further validated in a second cohort consisting of 40 samples with normozoospermia (control group), 47 samples with asthenozoospermia, and 19 samples with oligozoospermia (of which 74% also low motility). Highest microRNA yields were obtained with the Biofluids RNA extraction kit, with inclusion of MS2 RNA carrier and proteinase K treatment to the protocol, and when 50 µL of seminal plasma was used as input. Exosome isolation prior to RNA extraction did not lead to enhanced yields. In the test cohort, 236 microRNAs could be detected, of which 54 microRNAs showed a difference between groups. Five microRNAs were analyzed in the validation cohort. MiR-34b-5p levels in the control group were significantly higher compared to the asthenozoospermia group (p < 0.05) and compared to the oligozoospermia group (p < 0.001). We optimized microRNA acquirement from seminal plasma and identified microRNA levels in relation to semen concentration and motility. As recent human and mouse studies show that the miR-34 family is a marker of low semen concentration and is crucial in spermatogenesis, seminal plasma miR-34b-5p may represent a suitable candidate to study further as a marker of male subfertility.
Asunto(s)
MicroARNs/genética , Semen , Recuento de Espermatozoides , Astenozoospermia/diagnóstico , Astenozoospermia/genética , Biomarcadores , Biología Computacional/métodos , Perfilación de la Expresión Génica , Humanos , Masculino , Oligospermia/diagnóstico , Oligospermia/genética , Pronóstico , Reproducibilidad de los Resultados , Espermatogénesis , TranscriptomaRESUMEN
BACKGROUND: T-cell mediated immunotherapy brought clinical success for many cancer patients. Nonetheless, downregulation of MHC class I antigen presentation, frequently occurring in solid cancers, limits the efficacy of these therapies. Unraveling the mechanisms underlying this type of immune escape is therefore of great importance. We here investigated the immunological effects of metabolic stress in cancer cells as a result of nutrient deprivation. METHODS: TC1 and B16F10 tumor cell lines were cultured under oxygen- and glucose-deprivation conditions that mimicked the tumor microenvironment of solid tumors. Presentation of peptide antigens by MHC class I molecules was measured by flow cytometry and via activation of tumor-specific CD8 T cell clones. The proficiency of the IFNy-STAT1 pathway was investigated by Western blots on phosphorylated proteins, transfection of constitutive active STAT1 constructs and qPCR of downstream targets. Kinase inhibitors for PI3K were used to examine its role in IFNy receptor signal transduction. RESULTS: Combination of oxygen- and glucose-deprivation resulted in decreased presentation of MHC class I antigens on cancer cells, even in the presence of the stimulatory cytokine IFNy. This unresponsiveness to IFNy was the result of failure to phosphorylate the signal transducer STAT1. Forced expression of constitutive active STAT1 fully rescued the MHC class I presentation. Furthermore, oxygen- and glucose-deprivation increased PI3K activity in tumor cells. Pharmacological inhibition of this pathway not only restored signal transduction through IFNy-STAT1 but also improved MHC class I presentation. Importantly, PI3K inhibitors also rendered tumor cells sensitive for recognition by CD8 T cells in culture conditions of metabolic stress. CONCLUSIONS: These data revealed a strong impact of metabolic stress on the presentation of tumor antigens by MHC class I and suggest that this type of tumor escape takes place at hypoxic areas even during times of active T cell immunity and IFNy release.
Asunto(s)
Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Fosfatidilinositol 3-Quinasas/inmunología , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores de Interferón/antagonistas & inhibidores , Animales , Presentación de Antígeno , Hipoxia de la Célula , Línea Celular Tumoral , Glucosa/deficiencia , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Interferón gamma/inmunología , Interferón gamma/metabolismo , Interferón gamma/farmacología , Ratones , Ratones Endogámicos C57BL , Fosforilación , Receptores de Interferón/inmunología , Receptores de Interferón/metabolismo , Factor de Transcripción STAT1/inmunología , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , Estrés Fisiológico/inmunología , Escape del Tumor , Receptor de Interferón gammaRESUMEN
Most T cell-based immunotherapies of cancer depend on intact antigen presentation by HLA class I molecules (HLA-I). However, defects in the antigen-processing machinery can cause downregulation of HLA-I, rendering tumor cells resistant to CD8+ T cells. Previously, we demonstrated that a unique category of cancer antigens is selectively presented by tumor cells deficient for the peptide transporter TAP, enabling a specific attack of such tumors without causing immunopathology in mouse models. With a novel combinatorial screening approach, we now identify 16 antigens of this category in humans. These HLA-A*02:01 presented peptides do not derive from the mutanome of cancers, but are of "self" origin and therefore constitute universal neoantigens. Indeed, CD8+ T cells specific for the leader peptide of the ubiquitously expressed LRPAP1 protein recognized TAP-deficient, HLA-Ilow lymphomas, melanomas, and renal and colon carcinomas, but not healthy counterparts. In contrast to personalized mutanome-targeted therapies, these conserved neoantigens and their cognate receptors can be exploited for immune-escaped cancers across diverse histological origins.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/deficiencia , Presentación de Antígeno , Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Antígeno HLA-A2/inmunología , Proteína Asociada a Proteínas Relacionadas con Receptor de LDL/inmunología , Proteínas de Neoplasias/inmunología , Neoplasias/inmunología , Escape del Tumor , Transportadoras de Casetes de Unión a ATP/inmunología , Linfocitos T CD8-positivos/patología , Femenino , Humanos , Masculino , Neoplasias/patología , Células Tumorales CultivadasRESUMEN
PURPOSE: Langerhans Cell Histiocytosis (LCH) is a neoplastic disorder characterized by tissue accumulating CD1a+ histiocytes which frequently carry somatic mutations. Irrespective of mutation status, these LCH-cells display constitutively active kinases belonging to the MAPK pathway. We evaluated, in retrospect, the contribution of individual components of the MAPK-activating and chemotaxis-promoting TNF-CXCR4-CXCL12 axis to LCH manifestation and outcome. EXPERIMENTAL DESIGN: CXCR4, CXCL12 and TNF protein expression was immunohistochemically analyzed in 70 LCH-affected biopsies. The presence of CXCR4+CD1a+ cells in peripheral blood (PB) and/or bone marrow (BM) samples was evaluated by flowcytometry in 13 therapy-naive LCH-patients. RESULTS: CXCL12 was detected in 68/70 (97%) biopsies. CXCR4+LCH-cells were present in 50/70 (71%) biopsies; their presence was associated with higher levels of intralesional TNF. Circulating CD1a+CXCR4+ cells were detected in 4/13 (31%) therapy-naïve LCH-patients which displayed BRAFV600E (2/4), MAP2K1 (1/4) or no (1/4) mutations in their tissues. These CD11c co-expressing CD1a+CXCR4+cells migrated to CXCL12 in chemotaxis assays. Lesional CXCR4+LCH-cells were detected in 18/20 cases who presented with LCH manifestation at multiple sites and in 5/23 (22%) patients who developed additional lesions after initially presenting with a single lesion. The CXCR4 status at onset proved to be an independent risk factor for LCH reactivation in multivariate analysis (odds ratio 10.4, p = 0.034). CONCLUSIONS: This study provides the first evidence that CXCR4 is involved in the homing and retention of LCH-cells in CXCL12-expressing tissues and qualifies CXCR4 as a candidate prognostic marker for less favorable disease outcome.