RESUMEN
Ti-aluminosilicate gels were used as supports for the immobilization of Fe, Co, and Ni oxides (5%) by impregnation and synthesis of efficient photocatalysts for the degradation of ß-lactam antibiotics from water. Titanium oxide (1 and 2%) was incorporated into the zeolite network by modifying the gel during the zeolitization process. The formation of the zeolite Y structure and its microporous structure were evidenced by X-ray diffraction and N2 physisorption. The structure, composition, reduction, and optical properties were studied by X-ray diffraction, H2-TPR, XPS, Raman, photoluminescence, and UV-Vis spectroscopy. The obtained results indicated a zeolite Y structure for all photocatalysts with tetracoordinated Ti4+ sites. The second transitional metals supported by the post-synthesis method were obtained in various forms, such as oxides and/or in the metallic state. A red shift of the absorption edge was observed in the UV-Vis spectra of photocatalysts upon the addition of Fe, Co, or Ni species. The photocatalytic performances were evaluated for the degradation of cefuroxime in water under visible light irradiation. The best results were obtained for iron-immobilized photocatalysts. Scavenger experiments explained the photocatalytic results and their mechanisms. A different contribution of the active species to the photocatalytic reactions was evidenced.
RESUMEN
Zeolite Y samples with microporous and hierarchical structures containing Ti-Ni and Ti-Co oxides were obtained as active photocatalysts. Different Ti amounts (5, 10% TiO2) were supported, followed by the loading of Ni or Co oxides (5%). X-ray diffraction evidenced the presence of TiO2 as an anatase. N2 adsorption-desorption results showed type IV isotherms for hierarchical zeolite Y samples, and a combination of type IV and I isotherms for zeolite Y samples. UV-Vis diffuse reflectance spectra showed a shift in the absorption band to visible with increasing Ti loading and especially after Co and Ni addition. A significant effect of the support was evidenced for Ti and its interaction with Co/Ni species. The zeolite Y support stabilized Ti in the 4+ oxidation state while hierarchical zeolite Y support favored the formation of Ti3+ species, Ni0 and Ni2+ and the oxidation of Co to 3+ oxidation state. Photocatalytic activity, under UV and visible light irradiation, was evaluated by the degradation of amoxicillin, used as a model test. The photocatalytic mechanism was investigated using ethanol, p-benzoquinone and KI as ·OH and ·O2- radicals and hole (h+) scavengers. The best results were obtained for the immobilized Ni-Ti species on the hierarchical zeolite Y support.
RESUMEN
Three-dimensional photoactive self-standing porous materials have been synthesized through the integration of soft chemistry and colloids (emulsions, lyotrope mesophases, and P25 titania nanoparticles). Final multiscale porous ceramics bear 700-1000 m2 g-1 of micromesoporosity depending on the P25 nanoparticle contents. The applied thermal treatment does not affect the P25 anatase/rutile allotropic phase ratio. Photonic investigations correlated with the foams' morphologies suggest that the larger amount of TiO2 that is introduced, the larger the walls' density and the smaller the mean size of the void macroscopic diameters, with both effects inducing a reduction of the photon transport mean free path (lt) with the P25 content increase. A light penetration depth in the range of 6 mm is reached, thus depicting real 3D photonic scavenger behavior. The 3D photocatalytic properties of the MUB-200(x) series, studied in a dynamic "flow-through" configuration, show that the highest photoactivity (concentration of acetone ablated and concentration of CO2 formed) is obtained with the highest monolith height (volume) while providing an average of 75% mineralization. These experimental results validate the fact that these materials, bearing 3D photoactivity, are paving the path for air purification operating with self-standing porous monolith-type materials, which are much easier to handle than powders. As such, the photocatalytic systems can now be advantageously miniaturized, thereby offering indoor air treatment within vehicles/homes while drastically limiting the associated encumbrance. This volumetric counterintuitive acting mode for light-induced reactions may find other relevant advanced applications for photoinduced water splitting, solar fuel, and dye-sensitized solar cells while both optimizing photon scavenging and opening the path for the miniaturization of the processes where encumbrance or a foot-print penalty would be advantageously circumvented.
RESUMEN
We immobilized a fungal laccase with only two spatially close lysines available for functionalization into macrocellular Si(HIPE) monoliths for the purpose of continuous flow catalysis. Immobilization (30-45 % protein immobilization yields) was obtained using a covalent bond forming reaction between the enzyme and low glutaraldehyde (0.625 % (w/w)) functionalized foams. Testing primarily HBT-mediated RB5 dye decolorization in continuous flow reactors, we show that the activity of the heterogeneous catalyst is comparable to its homogeneous counterpart. More, its operational activity remains as high as 60 % after twelve consecutive decolorization cycles as well as after one-year storage, performances remarkable for such a material. We further immobilized two variants of the laccase containing a unique lysine: one located in the vicinity of the substrate oxidation site (K157) and one at the opposite side of this oxidation site (K71) to study the effect of the proximity of the Si(HIPE) surface on enzyme activity. Comparing activities on different substrates for monoliths with differentially oriented catalysts, we show a twofold discrimination for ABTS relative to ascorbate. This study provides ground for the development of neo-functionalized materials that beyond allowing stability and reusability will become synergic partners in the catalytic process.
RESUMEN
Here, combining the evaporation-induced self-assembly (EISA) method and the liquid crystal templating pathway, mesostructured amorphous zirconium oxides have been prepared by a soft templating method without addition of any heteroelement to stabilize the mesopore framework. The recovered materials have been characterized by SAXS measurements, nitrogen adsorption-desorption analysis and X-ray diffraction (XRD). The obtained mesostructured zirconia exhibits a high thermal stability. An in situ XRD study performed as a function of temperature shows that the amorphous ZrO2, obtained after removal of the pore templating agent (pluronic P123), begins to crystallize in air from 420 °C. Amorphous mesostructured ZrO2 also presents a high hydrothermal stability; these materials are not degraded after 72 hours in boiling water.
RESUMEN
Traditional porous monoliths Si(HIPE) (High Internal Phase Emulsion), prepared from the Tetradecyltrimethylammonium Bromide (TTAB)/dodecane/water system, offer high specific surface area, mainly due to microporosity. Aside, mesoporous materials SBA-15, prepared from Pluronic P123, have a high specific surface area, but are obtained as powder, which limits their applications. Starting from the mixed TTAB-P123 surfactant, it is expected to tune the mesoporosity of Si(HIPE), while keeping their monolithic character. The ternary TTAB/P123/water phase diagram was established by varying the weight ratio between these two surfactants. The micellar structure as well as the structural parameters of the liquid crystal domains were determined by SAXS (Small Angle X-ray Scattering). The effect of dodecane solubilization was also investigated and concentrated emulsions were formulated from the (P123/TTAB)/dodecane/water systems. After this soft matter dedicated study, the acquired knowledge was transferred toward the hierarchical porous silica generations, where the sol-gel process is involved. Mixing P123 with TTAB, macro-mesoporous monolithic silica with an enhanced contribution of the specific surface area due to mesoporosity can be prepared. The variation of the TTAB/P123 weight ratio allows controlling the porosity at the mesoscale. Moreover, the macroporosity can be tuned by changing the preparation method, by mixing either the two micellar solutions or directly the two surfactants prior the emulsification process.
RESUMEN
In contrast to hydrogenated based systems that led to many studies, fluorinated surfactants have been little reported. Thanks to their high chemical and thermal stability, these compounds are considered as suitable candidates for the synthesis of porous materials with an enhanced hydrothermal stability. This study reports the synthesis of a new fluorinated surfactant, 2-trifluoromethyl-7,7,8,8,9,9,10,10,11,11,12,12,12-tridecafluoro-4-thia-1-dodecanoic acid (FSC) obtained from the thiol-ene radical addition of 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-octanethiol onto 2-trifluoromethyl acrylic acid in 85% yield. In the aim of achieving micelles in water to design mesoporous materials according to the cooperative templating mechanism, FSC was modified with water-soluble telechelic diamine (Jeffamine) ED-600. The modified surfactant was deeply characterized by spectroscopic methods and the FSC-Jeffamine ED-600 micellar system was used as porogen to prepare mesoporous materials via the cooperative templating mechanism. Spherical wormhole-like mesostructured silica materials of high specific surface area (850m2/g) and homogeneous pore size distribution (ca. 3.4nm) were obtained by conveniently adjusting the porogen/silica molar ratio and the hydrothermal conditions.
RESUMEN
The one pot synthesis of dual mesoporous titania (2.3 and 7.7 nm) has been achieved from a mixture of fluorinated and Pluronic surfactants. The small and large mesopore networks are templated, respectively, by a fluorinated-rich liquid crystal and a Pluronic-rich liquid crystal, which are in equilibrium. After calcination at 350 °C, the amorphous walls are transformed into semicrystalline anatase preserving the mesoporous structure. Results concerning the photodegradation of methyl orange using the calcined photocatalysts highlight that the kinetic rate constant (k) determined for the dual mesoporous titania is 2.6 times higher than the k value obtained for the monomodal ones.
RESUMEN
Surfactant templated silica thin films were self-assembled on solid substrates by dip-coating using a partially fluorinated surfactant R8F(EO)9 as the liquid crystal template. The aim was 2-fold: first we checked which composition in the phase diagram was corresponding to a 2D rectangular highly ordered crystalline phase and second we exposed the films to sc-CO2 to foster the removal of the surfactant. The films were characterized by in situ X-ray reflectivity (XRR) and grazing incidence small angle X-ray scattering (GISAXS) under CO2 pressure from 0 to 100 bar at 34 °C. GISAXS patterns reveal the formation of a 2-D rectangular structure at a molar ratio R8F(EO)9/Si equal to 0.1. R8F(EO)9 micelles have a cylindrical shape, which have a core/shell structure ordered in a hexagonal system. The core contains the R8F part and the shell is a mixture of (EO)9 embedded in the silica matrix. We further evidence that the extraction of the template using supercritical carbon dioxide can be successfully achieved. This can be attributed to both the low solubility parameter of the surfactants and the fluorine and ethylene oxide CO2-philic groups. The initial 2D rectangular structure was well preserved after depressurization of the cell and removal of the surfactant. We attribute the very high stability of the rinsed film to the large value of the wall thickness relatively to the small pore size.
RESUMEN
The formation of a 2D-hexagonal (p6m) silica-based hybrid dual-mesoporous material is investigated in situ by using synchrotron time-resolved small-angle X-ray scattering (SAXS). The material is synthesized from a mixed micellar solution of a nonionic fluorinated surfactant, R(F) 8 (EO)9 (EO=ethylene oxide) and a nonionic triblock copolymer, P123. Both mesoporous networks, with pore dimensions of 3.3 and 8.5â nm respectively, are observed by nitrogen sorption, transmission electron microscopy (TEM), and SAXS. The in situ SAXS experiments reveal that mesophase formation occurs in two steps. First the nucleation and growth of a primary 2D-hexagonal network (N1), associated with mixed micelles containing P123, then subsequent formation of a second network (N2), associated with micelles of pure R(F) 8 (EO)9 . The data obtained from SAXS and TEM suggest that the N1 network is used as a nucleation center for the formation of the N2 network, which would result in the formation of a grain with two mesopore sizes. Understanding the mechanism of the formation of such materials is an important step towards the synthesis of more-complex materials by fine tuning the porosity.
RESUMEN
Due to the difference in «mutual phobicity¼ between fluorocarbon and hydrocarbon chains, mixtures of fluorinated and hydrogenated surfactants are excellent candidates to design bimodal systems having two types of mesopores. In literature, only a few papers deal with these bimodal systems. Here hexagonal liquid crystal mixtures of the polyoxyethylene fluoroalkyl ether [R(F)8(EO)9] and the Pluronic [P123] have been used to template this kind of mesostructure through the liquid crystal mechanism, which is barely considered. After the detailed investigation of the R(F)8(EO)9/P123/water liquid crystal domain, materials have been synthesized and characterized by small angle X-ray scattering, transmission electron microscopy and nitrogen adsorption-desorption analysis. Our results show that this system provides two separate pore sizes in the materials over the mesoporous range. The ratio between the small mesopores and the large ones depends on the proportion between the porogens in the mixture. Nonetheless, we also outline that a minimum quantity of silica is required to recover the two hexagonal networks.
Asunto(s)
Hidrocarburos Fluorados/química , Cristales Líquidos/química , Impresión Molecular , Polímeros/química , Dióxido de Silicio/química , Adsorción , Éter/química , Halogenación , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Poloxaleno/química , Polietilenglicoles/química , Porosidad , Dispersión del Ángulo Pequeño , Propiedades de Superficie , Tensoactivos/química , Difracción de Rayos XRESUMEN
We report a straightforward approach for both structuring and entrapping enzymes into hierarchical silica materials with hexagonally ordered mesopores (12 nm) and tailored macroporosity by converting a double emulsion colloidal template (tens of microns) into solid lipid nanoparticles (hundreds of nanometres). The supported biocatalyst efficiently catalyzes the methanolysis of colza oil.
Asunto(s)
Reactores Biológicos , Enzimas Inmovilizadas/metabolismo , Lipasa/metabolismo , Mucor/enzimología , Aceites de Plantas/metabolismo , Dióxido de Silicio/química , Biocatálisis , Reactores Biológicos/microbiología , Brassica napus/química , Coloides/química , Emulsiones/química , Enzimas Inmovilizadas/química , Lipasa/química , Lípidos/química , Metanol/metabolismo , Nanopartículas/química , Aceites de Plantas/aislamiento & purificación , Porosidad , Semillas/químicaRESUMEN
Silicalization of curcumin-loaded solid lipid nanoparticle (SLN)/micelle dispersions afforded a compartmentalized nanovector, with both macro- and mesostructured domains. SLNs act as reservoirs of curcumin (CU), while mesopores act as pathways to control drug release. Moreover, the release sustainability depends on the nature of the solid lipid (cetyl palmitate vs. stearic acid) and on the pH of the receiving phase. The meso-macrostructured silica matrix templated by SLNs appears thus as a promising drug delivery system for pH-responsive controlled release.
RESUMEN
The formation of two-dimensional (2D)-hexagonal (p6m) silica-based hybrid materials from concentrated micellar solutions (10 wt %) of two nonionic fluorinated surfactants, R(7)(F)(EO)(8) and R(8)(F)(EO)(9), is investigated in situ using synchrotron time-resolved small angle X-ray scattering (SAXS). The two surfactants form direct micelles with different structures prior to the silica precursor addition as demonstrated by SAXS and SANS. R(8)(F)(EO)(9) gives spherical micelles and R(7)(F)(EO)(8) more complex ones, modeled here as short wormlike micelles. The in situ SAXS experiments reveal that both surfactants form well-ordered 2D-hexagonal hybrid materials after the addition of the silica precursor, in coexistence with an excess of surfactant micelles. The structures of both 2D-hexagonal phases are compared just after precipitation, and it is found that more robust and larger silica walls are formed for R(8)(F)(EO)(9) than for R(7)(F)(EO)(8). This could explain why only the material obtained with R(8)(F)(EO)(9) is stable upon washing, as observed previously. Moreover, it is proposed that in both cases, only a part of the micelles interact with the silica oligomers and undergo structural modifications before forming the 2D-hexagonal mesophase. The obtained results are finally discussed in the more general framework of the templating mechanism for nonionic surfactants.
RESUMEN
In an attempt to answer the question if there is dependence between the pore ordering of the mesoporous silica, obtained through the cooperative template mechanism, and the shape of the micellar aggregates of the surfactant solutions, the micellar structures of two nonionic fluorinated surfactant based-systems are studied by SANS. By fitting the experimental spectra with theoretical models, the structural evolution of the molecular aggregates can be described, and some important parameters can be obtained, such as the water and eventually oil penetration into the surfactant film, the aggregation number, the area per polar head of the surfactant, and the surfactant chain conformations. We have shown that for the C(8)F(17)C(2)H(4)(OC(2)H(4))(9)OH system, the micelles are prolate spheroids. The increase of the surfactant concentration in water does not change the characteristics of the interfacial film, but the aggregation number raises and the particles become more elongated. By contrast, the experimental curves of C(7)F(15)C(2)H(4)(OC(2)H(4))(8)OH cannot be fitted considering a small particle model. However, progressive incorporation of fluorocarbon induces a change of size and shape of the globules, which become smaller and more and more spherical. Regarding the material mesopore ordering, it appears that the micelles that lead to hexagonal mesoporous silica materials are described with a model of quasi-spherical globules. On the contrary, when large micelles are found, only wormhole-like structures are obtained.
RESUMEN
Water in mesoporous materials possessing a two-dimensional hexagonal structure has been studied by the variation of its NMR longitudinal relaxation time T(1) as a function of the static magnetic field value, or equivalently of the NMR measurement frequency. This technique, dubbed relaxometry, has been applied from 5 kHz (measurement frequency) up to 400 MHz with various instruments including a variable-field spectrometer operating between 8 and 90 MHz. Moreover, the range 0-5 kHz could be investigated by transverse relaxation, T(2) denoting the corresponding relaxation time, and relaxation in the rotating frame, T(1ρ) denoting the corresponding relaxation time. Measurements of proton relaxation rates (inverse of relaxation times) have been performed with H(2)O and HOD (residual protons of heavy water) at water volumes of 80%, 60%, and 40% relative to the porous volume. Comparison between H(2)O and HOD shows clearly that, above 1 MHz where both sets of data are superposed, relaxation is purely intermolecular and due to paramagnetic relaxation (dipolar interactions of water protons with unpaired electrons of paramagnetic entities). Below 1 MHz, it is possible to subtract the intermolecular contribution (given by HOD data) from H(2)O data so that one is left with intramolecular relaxation which is solely due to water reorientational motions. The analysis of these low-frequency data (in terms of Lorentzian functions) reveals two types of water within the pores: one interacting strongly with the surface and the other corresponding to a second layer. High-frequency data, which arise from paramagnetic relaxation, exhibit again two types of water. Due to their correlation times, one type is assigned to relatively free water within the pores while the other type corresponds to bulk (interparticular) water. Their proportions, given as a function of the volume fraction, are consistent with the above assignments.
RESUMEN
New TiO(2) films have been self-assembled on solid substrate by dip-coating using TiCl(4) as the titanium source and the partly fluorinated surfactant F(CF(2))(8)C(2)H(4)(OC(2)H(4))(9)OH as the liquid crystal template. By control over the dip-withdrawal speed, film thicknesses from a minimum of 43 nm were produced with rms roughnesses of 0.5-0.7 nm. The films were characterized by X-ray reflectivity, grazing incidence small-angle X-ray scattering, atomic force microscopy, contact angle measurements, and Raman spectroscopy. Their GI-SAXS patterns are characteristic of a 2-D hexagonal structure in which tubular rods of the fluorinated surfactant are packed hexagonally and aligned parallel to the substrate. Reflectivity and contact angle measurements of the as-prepared film indicate that a low-density hydrophilic TiO(2) surface presents to the air.
RESUMEN
A one-step surfactant assisted synthesis pathway was developed leading to novel hierarchical macro-meso- (or micro-)porous aluminosilicates made of an assembly of macrochannels with openings between 0.5 and 2.0 microm and wormhole-like amorphous walls with tunable pore sizes.
RESUMEN
Bimodal (4 and 8 nm) mesoporous silicas with interconnected three-dimensional structure were synthesized by mild-temperature post-synthesis hydrothermal treatment of MCM-41 mesoporous materials in ammonia solution.