Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Sci Rep ; 10(1): 9831, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32561790

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) affects over 30% of adults in the United States. Bone morphogenetic protein (BMP) signaling is known to contribute to hepatic fibrosis, but the role of BMP signaling in the development of NAFLD is unclear. In this study, treatment with either of two BMP inhibitors reduced hepatic triglyceride content in diabetic (db/db) mice. BMP inhibitor-induced decrease in hepatic triglyceride levels was associated with decreased mRNA encoding Dgat2, an enzyme integral to triglyceride synthesis. Treatment of hepatoma cells with BMP2 induced DGAT2 expression and activity via intracellular SMAD signaling. In humans we identified a rare missense single nucleotide polymorphism in the BMP type 1 receptor ALK6 (rs34970181;R371Q) associated with a 2.1-fold increase in the prevalence of NAFLD. In vitro analyses revealed R371Q:ALK6 is a previously unknown constitutively active receptor. These data show that BMP signaling is an important determinant of NAFLD in a murine model and is associated with NAFLD in humans.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Transducción de Señal , Animales , Biomarcadores/sangre , Línea Celular Tumoral , Diacilglicerol O-Acetiltransferasa/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Pirazoles/farmacología , Pirazoles/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo
2.
Respir Res ; 20(1): 109, 2019 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-31159807

RESUMEN

BACKGROUND: Hypoxic pulmonary vasoconstriction (HPV) optimizes the match between ventilation and perfusion in the lung by reducing blood flow to poorly ventilated regions. Sepsis and endotoxemia impair HPV. We previously showed that nitric oxide synthase 2 (NOS2) is required, but not sufficient, for the effect of endotoxin on HPV. The aim of the current study was to identify additional factors that might contribute to the impairment of HPV during endotoxemia. METHODS: Gene expression profiling was determined using pulmonary tissues from NOS2-deficient (NOS2-/-) and wild-type mice subjected to endotoxin or saline challenge (control). HPV was accessed as the percentage increase in left pulmonary vascular resistance (LPVR) in response to left main bronchus occlusion (LMBO) in wild-type mice. RESULTS: Among the 22,690 genes analyzed, endotoxin induced a greater than three-fold increase in 59 and 154 genes in the lungs of wild-type and NOS2-/- mice, respectively. Of all the genes induced by endotoxin in wild-type mice, arginase 1 (Arg1) showed the greatest increase (16.3-fold compared to saline treated wild-type mice). In contrast, endotoxin did not increase expression of Arg1 in NOS2-/- mice. There was no difference in the endotoxin-induced expression of Arg2 between wild-type and NOS2-deficient mice. We investigated the role of arginase in HPV by treating the mice with normal saline or the arginase inhibitor Nω-hydroxy-nor-L-arginine (norNOHA). In control mice (in the absence of endotoxin) treated with normal saline, HPV was intact as determined by profound LMBO-induced increase in LPVR (121 ± 22% from baseline). During endotoxemia and treatment with normal saline, HPV was impaired compared to normal saline treated control mice (33 ± 9% vs. 121 ± 22%, P < 0.05). HPV was restored in endotoxin-exposed mice after treatment with the arginase inhibitor norNOHA as shown by the comparison to endotoxemic mice treated with normal saline (113 ± 29% vs, 33 ± 9%, P < 0.05) and to control mice treated with normal saline (113 ± 29% vs, 121 ± 22%, P = 0.97). CONCLUSIONS: The results of this study suggest that endotoxemia induces Arg1 and that arginase contributes to the endotoxin-induced impairment of HPV in mice.


Asunto(s)
Arginasa/metabolismo , Endotoxemia/enzimología , Circulación Pulmonar/fisiología , Resistencia Vascular/fisiología , Vasoconstricción/fisiología , Animales , Endotoxemia/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
3.
Arterioscler Thromb Vasc Biol ; 39(2): 178-187, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30587002

RESUMEN

Objective- Inflammatory stimuli enhance the progression of atherosclerotic disease. Inflammation also increases the expression of hepcidin, a hormonal regulator of iron homeostasis, which decreases intestinal iron absorption, reduces serum iron levels and traps iron within macrophages. The role of macrophage iron in the development of atherosclerosis remains incompletely understood. The objective of this study was to investigate the effects of hepcidin deficiency and decreased macrophage iron on the development of atherosclerosis. Approach and Results- Hepcidin- and LDL (low-density lipoprotein) receptor-deficient ( Hamp-/-/ Ldlr-/-) mice and Hamp+/+/ Ldlr-/- control mice were fed a high-fat diet for 21 weeks. Compared with control mice, Hamp-/-/ Ldlr-/- mice had decreased aortic macrophage activity and atherosclerosis. Because hepcidin deficiency is associated with both increased serum iron and decreased macrophage iron, the possibility that increased serum iron was responsible for decreased atherosclerosis in Hamp-/-/ Ldlr-/- mice was considered. Hamp+/+/ Ldlr-/- mice were treated with iron dextran so as to produce a 2-fold increase in serum iron. Increased serum iron did not decrease atherosclerosis in Hamp+/+/ Ldlr-/- mice. Aortic macrophages from Hamp-/-/ Ldlr-/- mice had less labile free iron and exhibited a reduced proinflammatory (M1) phenotype compared with macrophages from Hamp+/+/ Ldlr-/- mice. THP1 human macrophages treated with an iron chelator were used to model hepcidin deficiency in vitro. Treatment with an iron chelator reduced LPS (lipopolysaccharide)-induced M1 phenotypic expression and decreased uptake of oxidized LDL. Conclusions- In summary, in a hyperlipidemic mouse model, hepcidin deficiency was associated with decreased macrophage iron, a reduced aortic macrophage inflammatory phenotype and protection from atherosclerosis. The results indicate that decreasing hepcidin activity, with the resulting decrease in macrophage iron, may prove to be a novel strategy for the treatment of atherosclerosis.


Asunto(s)
Aterosclerosis/etiología , Hepcidinas/fisiología , Animales , Aterosclerosis/prevención & control , Femenino , Hepcidinas/deficiencia , Hierro/sangre , Macrófagos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de LDL/fisiología
4.
Nitric Oxide ; 80: 52-60, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30114529

RESUMEN

BACKGROUND: Endogenous nitric oxide (NO) may contribute to ischemic and anesthetic preconditioning while exogenous NO protects against ischemia-reperfusion (I/R) injury in the heart and other organs. Why those beneficial effects observed in animal models do not always translate into clinical effectiveness remains unclear. To mitigate reperfusion damage a source of NO is required. NO inhalation is known to increase tissue NO metabolites, but little information exists about the lifetime of these species. We therefore sought to investigate the fate of major NO metabolite classes following NO inhalation in mice in vivo. METHODS: C57BL/6J mice were exposed to 80 ppm NO for 1 h. NO metabolites were measured in blood (plasma and erythrocytes) and tissues (heart, liver, lung, kidney and brain) immediately after NO exposure and up to 48 h thereafter. Concentrations of S-nitrosothiols, N-nitrosamines and NO-heme products as well as nitrite and nitrate were quantified by gas-phase chemiluminescence and ion chromatography. In separate experiments, mice breathed 80 ppm NO for 1 h prior to cardiac I/R injury (induced by coronary arterial ligation for 1 h, followed by recovery). After sacrifice, the size of the myocardial infarction (MI) and the area at risk (AAR) were measured. RESULTS: After NO inhalation, elevated nitroso/nitrosyl levels returned to baseline over the next 24 h, with distinct multi-phasic decay profiles in each compartment. S/N-nitroso compounds and NO-hemoglobin in blood decreased exponentially, but remained above baseline for up to 30min, whereas nitrate was elevated for up to 3hrs after discontinuing NO breathing. Hepatic S/N-nitroso species concentrations remained steady for 30min before dropping exponentially. Nitrate only rose in blood, liver and kidney; nitrite tended to be lower in all organs immediately after NO inhalation but fluctuated considerably in concentration thereafter. NO inhalation before myocardial ischemia decreased the ratio of MI/AAR by 30% vs controls (p = 0.002); only cardiac S-nitrosothiols and NO-hemes were elevated at time of reperfusion onset. CONCLUSIONS: Metabolites in blood do not reflect NO metabolite status of any organ. Although NO is rapidly inactivated by hemoglobin-mediated oxidation in the circulation, long-lived tissue metabolites may account for the myocardial preconditioning effects of inhaled NO. NO inhalation may afford similar protection in other organs.


Asunto(s)
Daño por Reperfusión Miocárdica/prevención & control , Óxido Nítrico/administración & dosificación , Óxido Nítrico/metabolismo , Administración por Inhalación , Animales , Encéfalo/metabolismo , Estudios de Factibilidad , Congelación , Semivida , Riñón/metabolismo , Pulmón/metabolismo , Masculino , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Óxido Nítrico/sangre , Nitritos/sangre , Nitritos/metabolismo , Nitritos/orina , Especificidad de Órganos , S-Nitrosotioles/metabolismo , Distribución Tisular
5.
Eur Heart J ; 39(29): 2717-2725, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29800130

RESUMEN

Aims: Inhalation of nitric oxide (iNO) during myocardial ischaemia and after reperfusion confers cardioprotection in preclinical studies via enhanced cyclic guanosine monophosphate (cGMP) signalling. We tested whether iNO reduces reperfusion injury in patients with ST-elevation myocardial infarction (STEMI; NCT01398384). Methods and results: We randomized in a double-blind, placebo-controlled study 250 STEMI patients to inhale oxygen with (iNO) or without (CON) 80 parts-per-million NO for 4 h following percutaneous revascularization. Primary efficacy endpoint was infarct size as a fraction of left ventricular (LV) size (IS/LVmass), assessed by delayed enhancement contrast magnetic resonance imaging (MRI). Pre-specified subgroup analysis included thrombolysis-in-myocardial-infarction flow in the infarct-related artery, troponin T levels on admission, duration of symptoms, location of culprit lesion, and intra-arterial nitroglycerine (NTG) use. Secondary efficacy endpoints included IS relative to risk area (IS/AAR), myocardial salvage index, LV functional recovery, and clinical events at 4 and 12 months. In the overall population, IS/LVmass at 48-72 h was 18.0 ± 13.4% in iNO (n = 109) and 19.4 ± 15.4% in CON [n = 116, effect size -1.524%, 95% confidence interval (95% CI) -5.28, 2.24; P = 0.427]. Subgroup analysis indicated consistency across clinical confounders of IS but significant treatment interaction with NTG (P = 0.0093) resulting in smaller IS/LVmass after iNO in NTG-naïve patients (n = 140, P < 0.05). The secondary endpoint IS/AAR was 53 ± 26% with iNO vs. 60 ± 26% in CON (effect size -6.8%, 95% CI -14.8, 1.3, P = 0.09) corresponding to a myocardial salvage index of 47 ± 26% vs. 40 ± 26%, respectively, P = 0.09. Cine-MRI showed similar LV volumes at 48-72 h, with a tendency towards smaller increases in end-systolic and end-diastolic volumes at 4 months in iNO (P = 0.048 and P = 0.06, respectively, n = 197). Inhalation of nitric oxide was safe and significantly increased cGMP plasma levels during 4 h reperfusion. The Kaplan-Meier analysis for the composite of death, recurrent ischaemia, stroke, or rehospitalizations showed a tendency toward lower event rates with iNO at 4 months and 1 year (log-rank test P = 0.10 and P = 0.06, respectively). Conclusions: Inhalation of NO at 80 ppm for 4 h in STEMI was safe but did not reduce infarct size relative to absolute LVmass at 48-72h. The observed functional recovery and clinical event rates at follow-up and possible interaction with nitroglycerine warrant further studies of iNO in STEMI.


Asunto(s)
Depuradores de Radicales Libres/administración & dosificación , Ventrículos Cardíacos/patología , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Óxido Nítrico/administración & dosificación , Infarto del Miocardio con Elevación del ST/terapia , Administración por Inhalación , Anciano , GMP Cíclico/sangre , Método Doble Ciego , Femenino , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Estimación de Kaplan-Meier , Imagen por Resonancia Cinemagnética , Masculino , Persona de Mediana Edad , Mortalidad , Daño por Reperfusión Miocárdica/etiología , Nitroglicerina/uso terapéutico , Tamaño de los Órganos , Terapia por Inhalación de Oxígeno , Readmisión del Paciente , Recurrencia , Infarto del Miocardio con Elevación del ST/complicaciones , Infarto del Miocardio con Elevación del ST/diagnóstico por imagen , Infarto del Miocardio con Elevación del ST/patología , Accidente Cerebrovascular/etiología , Vasodilatadores/uso terapéutico , Disfunción Ventricular Izquierda/etiología
6.
Antioxid Redox Signal ; 26(4): 153-164, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27505125

RESUMEN

AIMS: The use of doxorubicin, a potent chemotherapeutic agent, is limited by cardiotoxicity. We tested the hypothesis that decreased soluble guanylate cyclase (sGC) enzyme activity contributes to the development of doxorubicin-induced cardiotoxicity. RESULTS: Doxorubicin administration (20 mg/kg, intraperitoneally [IP]) reduced cardiac sGC activity in wild-type (WT) mice. To investigate whether decreased sGC activity contributes to doxorubicin-induced cardiotoxicity, we studied mice with cardiomyocyte-specific deficiency of the sGC α1-subunit (mice with cardiomyocyte-specific deletion of exon 6 of the sGCα1 allele [sGCα1-/-CM]). After 12 weeks of doxorubicin administration (2 mg/kg/week IP), left ventricular (LV) systolic dysfunction was greater in sGCα1-/-CM than WT mice. To further assess whether reduced sGC activity plays a pathogenic role in doxorubicin-induced cardiotoxicity, we studied a mouse model in which decreased cardiac sGC activity was induced by cardiomyocyte-specific expression of a dominant negative sGCα1 mutant (DNsGCα1) upon doxycycline removal (Tet-off). After 8 weeks of doxorubicin administration, DNsGCα1tg/+, but not WT, mice displayed LV systolic dysfunction and dilatation. The difference in cardiac function and remodeling between DNsGCα1tg/+ and WT mice was even more pronounced after 12 weeks of treatment. Further impairment of cardiac function was attenuated when DNsGCα1 gene expression was inhibited (beginning at 8 weeks of doxorubicin treatment) by administering doxycycline. Furthermore, doxorubicin-associated reactive oxygen species generation was higher in sGCα1-deficient than WT hearts. Innovation and Conclusion: These data demonstrate that a reduction in cardiac sGC activity worsens doxorubicin-induced cardiotoxicity in mice and identify sGC as a potential therapeutic target. Various pharmacological sGC agonists are in clinical development or use and may represent a promising approach to limit doxorubicin-associated cardiotoxicity. Antioxid. Redox Signal. 26, 153-164.


Asunto(s)
Antibióticos Antineoplásicos/efectos adversos , Doxorrubicina/efectos adversos , Cardiopatías/etiología , Cardiopatías/metabolismo , Guanilil Ciclasa Soluble/sangre , Animales , Antibióticos Antineoplásicos/administración & dosificación , Cardiotoxicidad , Modelos Animales de Enfermedad , Doxorrubicina/administración & dosificación , Activación Enzimática/efectos de los fármacos , Expresión Génica , Cardiopatías/fisiopatología , Ratones , Ratones Noqueados , Mutación , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Guanilil Ciclasa Soluble/deficiencia , Disfunción Ventricular
7.
Anesthesiology ; 125(5): 952-963, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27517645

RESUMEN

BACKGROUND: Transfusion of packed erythrocytes stored for a long duration is associated with increased pulmonary arterial pressure and vascular resistance. Prolonged storage decreases erythrocyte deformability, and older erythrocytes are rapidly removed from the circulation after transfusion. The authors studied whether treating stored packed ovine erythrocytes with NO before transfusion could prevent pulmonary vasoconstriction, enhance erythrocyte deformability, and prolong erythrocyte survival after transfusion. METHODS: Ovine leukoreduced packed erythrocytes were treated before transfusion with either NO gas or a short-lived NO donor. Sheep were transfused with autologous packed erythrocytes, which were stored at 4°C for either 2 ("fresh blood") or 40 days ("stored blood"). Pulmonary and systemic hemodynamic parameters were monitored before, during, and after transfusion. Transfused erythrocytes were labeled with biotin to measure their circulating lifespan. Erythrocyte deformability was assessed before and after NO treatment using a microfluidic device. RESULTS: NO treatment improved the deformability of stored erythrocytes and increased the number of stored erythrocytes circulating at 1 and 24 h after transfusion. NO treatment prevented transfusion-associated pulmonary hypertension (mean pulmonary arterial pressure at 30 min of 21 ± 1 vs. 15 ± 1 mmHg in control and NO-treated packed erythrocytes, P < 0.0001). Washing stored packed erythrocytes before transfusion did not prevent pulmonary hypertension. CONCLUSIONS: NO treatment of stored packed erythrocytes before transfusion oxidizes cell-free oxyhemoglobin to methemoglobin, prevents subsequent NO scavenging in the pulmonary vasculature, and limits pulmonary hypertension. NO treatment increases erythrocyte deformability and erythrocyte survival after transfusion. NO treatment might provide a promising therapeutic approach to prevent pulmonary hypertension and extend erythrocyte survival.


Asunto(s)
Transfusión de Eritrocitos/métodos , Eritrocitos/efectos de los fármacos , Hipertensión Pulmonar/prevención & control , Óxido Nítrico , Animales , Modelos Animales de Enfermedad , Ovinos , Factores de Tiempo
8.
J Vis Exp ; (111)2016 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-27284788

RESUMEN

Cardiovascular disease is the leading cause of morbidity and mortality in the world. Atherosclerotic plaques, consisting of lipid-laden macrophages and calcification, develop in the coronary arteries, aortic valve, aorta, and peripheral conduit arteries and are the hallmark of cardiovascular disease. In humans, imaging with computed tomography allows for the quantification of vascular calcification; the presence of vascular calcification is a strong predictor of future cardiovascular events. Development of novel therapies in cardiovascular disease relies critically on improving our understanding of the underlying molecular mechanisms of atherosclerosis. Advancing our knowledge of atherosclerotic mechanisms relies on murine and cell-based models. Here, a method for imaging aortic calcification and macrophage infiltration using two spectrally distinct near-infrared fluorescent imaging probes is detailed. Near-infrared fluorescent imaging allows for the ex vivo quantification of calcification and macrophage accumulation in the entire aorta and can be used to further our understanding of the mechanistic relationship between inflammation and calcification in atherosclerosis. Additionally, a method for isolating and culturing animal aortic vascular smooth muscle cells and a protocol for inducing calcification in cultured smooth muscle cells from either murine aortas or from human coronary arteries is described. This in vitro method of modeling vascular calcification can be used to identify and characterize the signaling pathways likely important for the development of vascular disease, in the hopes of discovering novel targets for therapy.


Asunto(s)
Calcinosis/diagnóstico por imagen , Músculo Liso Vascular/diagnóstico por imagen , Animales , Enfermedades de la Aorta/diagnóstico por imagen , Enfermedades de la Aorta/etiología , Enfermedades de la Aorta/metabolismo , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Humanos , Interpretación de Imagen Asistida por Computador , Inflamación , Ratones , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología
9.
Sci Signal ; 9(431): ra58, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27273096

RESUMEN

Epigenetic silencing of fragile X mental retardation 1 (FMR1) causes fragile X syndrome (FXS), a common inherited form of intellectual disability and autism. FXS correlates with abnormal synapse and dendritic spine development, but the molecular link between the absence of the FMR1 product FMRP, an RNA binding protein, and the neuropathology is unclear. We found that the messenger RNA encoding bone morphogenetic protein type II receptor (BMPR2) is a target of FMRP. Depletion of FMRP increased BMPR2 abundance, especially that of the full-length isoform that bound and activated LIM domain kinase 1 (LIMK1), a component of the noncanonical BMP signal transduction pathway that stimulates actin reorganization to promote neurite outgrowth and synapse formation. Heterozygosity for BMPR2 rescued the morphological abnormalities in neurons both in Drosophila and in mouse models of FXS, as did the postnatal pharmacological inhibition of LIMK1 activity. Compared with postmortem prefrontal cortex tissue from healthy subjects, the amount of full-length BMPR2 and of a marker of LIMK1 activity was increased in this brain region from FXS patients. These findings suggest that increased BMPR2 signal transduction is linked to FXS and that the BMPR2-LIMK1 pathway is a putative therapeutic target in patients with FXS and possibly other forms of autism.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Síndrome del Cromosoma X Frágil/genética , Animales , Trastorno Autístico/genética , Encéfalo/metabolismo , Cofilina 1/metabolismo , Cruzamientos Genéticos , Drosophila melanogaster , Síndrome del Cromosoma X Frágil/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Heterocigoto , Humanos , Quinasas Lim/metabolismo , Ratones , Ratones Noqueados , Neuritas/metabolismo , Neuronas/metabolismo , Fosforilación , Plásmidos/metabolismo , Corteza Prefrontal/metabolismo , Dominios Proteicos , ARN Interferente Pequeño/metabolismo , Transducción de Señal
10.
Mol Cell Biol ; 36(14): 1977-87, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27185878

RESUMEN

Atrial natriuretic peptide (ANP) has a central role in regulating blood pressure in humans. Recently, microRNA 425 (miR-425) was found to regulate ANP production by binding to the mRNA of NPPA, the gene encoding ANP. mRNAs typically contain multiple predicted microRNA (miRNA)-binding sites, and binding of different miRNAs may independently or coordinately regulate the expression of any given mRNA. We used a multifaceted screening strategy that integrates bioinformatics, next-generation sequencing data, human genetic association data, and cellular models to identify additional functional NPPA-targeting miRNAs. Two novel miRNAs, miR-155 and miR-105, were found to modulate ANP production in human cardiomyocytes and target genetic variants whose minor alleles are associated with higher human plasma ANP levels. Both miR-155 and miR-105 repressed NPPA mRNA in an allele-specific manner, with the minor allele of each respective variant conferring resistance to the miRNA either by disruption of miRNA base pairing or by creation of wobble base pairing. Moreover, miR-155 enhanced the repressive effects of miR-425 on ANP production in human cardiomyocytes. Our study combines computational, genomic, and cellular tools to identify novel miRNA regulators of ANP production that could be targeted to raise ANP levels, which may have applications for the treatment of hypertension or heart failure.


Asunto(s)
Factor Natriurético Atrial/genética , MicroARNs/genética , Miocitos Cardíacos/metabolismo , Alelos , Factor Natriurético Atrial/metabolismo , Presión Sanguínea , Células Cultivadas , Regulación hacia Abajo , Femenino , Variación Genética , Humanos , Placenta/metabolismo , Embarazo
11.
Am J Physiol Heart Circ Physiol ; 310(11): H1790-800, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27199131

RESUMEN

Dysregulated nitric oxide (NO) signaling contributes to the pathogenesis of hypertension, a prevalent and often sex-specific risk factor for cardiovascular disease. We previously reported that mice deficient in the α1-subunit of the NO receptor soluble guanylate cyclase (sGCα1 (-/-) mice) display sex- and strain-specific hypertension: male but not female sGCα1 (-/-) mice are hypertensive on an 129S6 (S6) but not a C57BL6/J (B6) background. We aimed to uncover the genetic and molecular basis of the observed sex- and strain-specific blood pressure phenotype. Via linkage analysis, we identified a suggestive quantitative trait locus associated with elevated blood pressure in male sGCα1 (-/-)S6 mice. This locus encompasses Cyp4a12a, encoding the predominant murine synthase of the vasoconstrictor 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE). Renal expression of Cyp4a12a in mice was associated with genetic background, sex, and testosterone levels. In addition, 20-HETE levels were higher in renal preglomerular microvessels of male sGCα1 (-/-)S6 than of male sGCα1 (-/-)B6 mice. Furthermore, treating male sGCα1 (-/-)S6 mice with the 20-HETE antagonist 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (20-HEDE) lowered blood pressure. Finally, 20-HEDE rescued the genetic background- and testosterone-dependent impairment of acetylcholine-induced relaxation in renal interlobar arteries associated with sGCα1 deficiency. Elevated Cyp4a12a expression and 20-HETE levels render mice susceptible to hypertension and vascular dysfunction in a setting of sGCα1 deficiency. Our data identify Cyp4a12a as a candidate sex-specific blood pressure-modifying gene in the context of deficient NO-sGC signaling.


Asunto(s)
Andrógenos/farmacología , Familia 4 del Citocromo P450/genética , Ácidos Hidroxieicosatetraenoicos/metabolismo , Hipertensión/metabolismo , Guanilil Ciclasa Soluble/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Femenino , Ligamiento Genético , Hipertensión/genética , Riñón/efectos de los fármacos , Riñón/metabolismo , Masculino , Ratones , Ratones Noqueados , Sitios de Carácter Cuantitativo , Factores Sexuales , Guanilil Ciclasa Soluble/genética , Testosterona/sangre
12.
J Am Coll Cardiol ; 67(7): 804-812, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26892417

RESUMEN

BACKGROUND: The cardiac natriuretic peptides (NPs), atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP), have central roles in sodium and blood pressure regulation. Extracardiac factors (e.g., obesity and diabetes) influence NP production, potentially altering cardiovascular responses to volume and pressure stress. OBJECTIVES: This study examined the effects of acute carbohydrate intake on the NP system in humans, and investigated underlying mechanisms. METHODS: Normotensive subjects (N = 33) were given a high-carbohydrate shake. Venous blood was sampled to measure N-terminal (NT)-proANP and NT-proBNP levels. Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and HepG2 cells were treated with glucose, and expression levels of NPs and micro ribonucleic acid 425 (miR-425), a negative regulator of ANP, were examined. The role of nuclear factor kappa B (NF-κB) in the glucose-mediated effects was investigated using a NF-κB inhibitor and expression plasmids encoding NF-κB subunits. RESULTS: We observed a 27% reduction in the levels of circulating NT-proANP (p < 0.001, maximal at 6 h) after carbohydrate challenge, with no effect on NT-proBNP levels in our human subjects. Glucose treatment of hESC-CMs for 6 h and 24 h increased levels of the primary transcript of miR-425 (pri-miR-425) and mature miR-425. A corresponding decrease in NPPA messenger RNA levels was also observed at both time points. Overexpression of NF-κB subunits in H9c2 cardiomyocytes increased miR-425 levels, whereas inhibition of NF-κB abrogated the glucose-mediated increase in pri-miR-425 levels in HepG2 cells. CONCLUSIONS: Acute carbohydrate challenge is associated with a reduction in ANP production. The mechanism appears to involve a glucose-induced increase in the expression of miR-425, mediated by NF-κB signaling.


Asunto(s)
Presión Sanguínea/fisiología , Miocitos Cardíacos/metabolismo , Péptidos Natriuréticos/genética , Obesidad/metabolismo , Sodio/metabolismo , Adulto , Animales , Factor Natriurético Atrial/biosíntesis , Factor Natriurético Atrial/genética , Femenino , Regulación de la Expresión Génica , Células Hep G2/metabolismo , Humanos , Masculino , Ratones , MicroARNs/biosíntesis , MicroARNs/genética , Miocitos Cardíacos/patología , Péptido Natriurético Encefálico/biosíntesis , Péptido Natriurético Encefálico/genética , Péptidos Natriuréticos/biosíntesis , Obesidad/genética , Obesidad/patología , Fragmentos de Péptidos/biosíntesis , Fragmentos de Péptidos/genética , Precursores de Proteínas , ARN Mensajero/genética , Transducción de Señal
13.
Am J Physiol Heart Circ Physiol ; 310(8): H984-94, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26873969

RESUMEN

Bone morphogenetic protein (BMP) signaling contributes to the development of cardiac hypertrophy. However, the identity of the BMP type I receptor involved in cardiac hypertrophy and the underlying molecular mechanisms are poorly understood. By using quantitative PCR and immunoblotting, we demonstrated that BMP signaling increased during phenylephrine-induced hypertrophy in cultured neonatal rat cardiomyocytes (NRCs), as evidenced by increased phosphorylation of Smads 1 and 5 and induction of Id1 gene expression. Inhibition of BMP signaling with LDN193189 or noggin, and silencing of Smad 1 or 4 using small interfering RNA diminished the ability of phenylephrine to induce hypertrophy in NRCs. Conversely, activation of BMP signaling with BMP2 or BMP4 induced hypertrophy in NRCs. Luciferase reporter assay further showed that BMP2 or BMP4 treatment of NRCs repressed atrogin-1 gene expression concomitant with an increase in calcineurin protein levels and enhanced activity of nuclear factor of activated T cells, providing a mechanism by which BMP signaling contributes to cardiac hypertrophy. In a model of cardiac hypertrophy, C57BL/6 mice treated with angiotensin II (A2) had increased BMP signaling in the left ventricle. Treatment with LDN193189 attenuated A2-induced cardiac hypertrophy and collagen deposition in left ventricles. Cardiomyocyte-specific deletion of BMP type I receptor ALK2 (activin-like kinase 2), but not ALK1 or ALK3, inhibited BMP signaling and mitigated A2-induced cardiac hypertrophy and left ventricular fibrosis in mice. The results suggest that BMP signaling upregulates the calcineurin/nuclear factor of activated T cell pathway via BMP type I receptor ALK2, contributing to cardiac hypertrophy and fibrosis.


Asunto(s)
Receptores de Activinas Tipo I/metabolismo , Angiotensina II , Proteína Morfogenética Ósea 2/farmacología , Proteína Morfogenética Ósea 4/farmacología , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Cardiomegalia/enzimología , Miocitos Cardíacos/enzimología , Receptores de Activinas Tipo I/deficiencia , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo II , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/deficiencia , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Cardiomegalia/inducido químicamente , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomegalia/prevención & control , Células Cultivadas , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Fibrosis , Proteína 1 Inhibidora de la Diferenciación/genética , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Factores de Transcripción NFATC/metabolismo , Fenilefrina/farmacología , Fosforilación , Pirazoles/farmacología , Pirimidinas/farmacología , Interferencia de ARN , Ratas Sprague-Dawley , Transducción de Señal , Proteínas Smad/genética , Proteínas Smad/metabolismo , Factores de Tiempo , Transfección
14.
J Appl Physiol (1985) ; 120(8): 825-32, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26823340

RESUMEN

Brown adipose tissue (BAT) activation increases glucose and lipid consumption; as such, it is been considered as a potential therapy to decrease obesity. BAT is highly vascularized and its activation is associated with a necessary increase in blood flow. However, whether increasing BAT blood flow per se increases BAT activity is unknown. To examine this hypothesis, we investigated whether an isolated increase in BAT blood flow obtained by ß2-adrenoreceptor (ß2-AR) stimulation with salbutamol increased BAT activity. BAT blood flow was estimated in vivo in mice using contrast-enhanced ultrasound. The absence of direct effect of salbutamol on the function of isolated brown adipocytes was assessed by measuring oxygen consumption. The effect of salbutamol on BAT activity was investigated by measuring BAT glucose uptake in vivo. BAT blood flow increased by 2.3 ± 0.6-fold during ß2-AR stimulation using salbutamol infusion in mice (P= 0.003). ß2-AR gene expression was detectable in BAT but was extremely low in isolated brown adipocytes. Oxygen consumption of isolated brown adipocytes did not change with salbutamol exposure, confirming the absence of a direct effect of ß2-AR agonist on brown adipocytes. Finally, ß2-AR stimulation by salbutamol increased BAT glucose uptake in vivo (991 ± 358 vs. 135 ± 49 ng glucose/mg tissue/45 min in salbutamol vs. saline injected mice, respectively,P= 0.046). In conclusion, an increase in BAT blood flow without direct stimulation of the brown adipocytes is associated with increased BAT metabolic activity. Increasing BAT blood flow might represent a new therapeutic target in obesity.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/fisiología , Receptores Adrenérgicos beta 2/metabolismo , Animales , Transporte Biológico/fisiología , Glucosa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Obesidad/fisiopatología , Consumo de Oxígeno/fisiología , Flujo Sanguíneo Regional/fisiología
15.
Nat Rev Cardiol ; 13(2): 106-20, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26461965

RESUMEN

Bone morphogenetic proteins (BMPs) and their receptors, known to be essential regulators of embryonic patterning and organogenesis, are also critical for the regulation of cardiovascular structure and function. In addition to their contributions to syndromic disorders including heart and vascular development, BMP signalling is increasingly recognized for its influence on endocrine-like functions in postnatal cardiovascular and metabolic homeostasis. In this Review, we discuss several critical and novel aspects of BMP signalling in cardiovascular health and disease, which highlight the cell-specific and context-specific nature of BMP signalling. Based on advancing knowledge of the physiological roles and regulation of BMP signalling, we indicate opportunities for therapeutic intervention in a range of cardiovascular conditions including atherosclerosis and pulmonary arterial hypertension, as well as for anaemia of inflammation. Depending on the context and the repertoire of ligands and receptors involved in specific disease processes, the selective inhibition or enhancement of signalling via particular BMP ligands (such as in atherosclerosis and pulmonary arterial hypertension, respectively) might be beneficial. The development of selective small molecule antagonists of BMP receptors, and the identification of ligands selective for BMP receptor complexes expressed in the vasculature provide the most immediate opportunities for new therapies.


Asunto(s)
Anemia/metabolismo , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Proteínas Morfogenéticas Óseas/metabolismo , Enfermedades Cardiovasculares/metabolismo , Transducción de Señal , Anemia/genética , Anemia/terapia , Proteínas Morfogenéticas Óseas/genética , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/terapia , Medicina Basada en la Evidencia , Homeostasis/genética , Humanos , Ligandos , Transducción de Señal/genética
16.
J Clin Invest ; 126(1): 389-401, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26657863

RESUMEN

Iron homeostasis is tightly regulated by the membrane iron exporter ferroportin and its regulatory peptide hormone hepcidin. The hepcidin/ferroportin axis is considered a promising therapeutic target for the treatment of diseases of iron overload or deficiency. Here, we conducted a chemical screen in zebrafish to identify small molecules that decrease ferroportin protein levels. The chemical screen led to the identification of 3 steroid molecules, epitiostanol, progesterone, and mifepristone, which decrease ferroportin levels by increasing the biosynthesis of hepcidin. These hepcidin-inducing steroids (HISs) did not activate known hepcidin-inducing pathways, including the BMP and JAK/STAT3 pathways. Progesterone receptor membrane component-1 (PGRMC1) was required for HIS-dependent increases in hepcidin biosynthesis, as PGRMC1 depletion in cultured hepatoma cells and zebrafish blocked the ability of HISs to increase hepcidin mRNA levels. Neutralizing antibodies directed against PGRMC1 attenuated the ability of HISs to induce hepcidin gene expression. Inhibiting the kinases of the SRC family, which are downstream of PGRMC1, blocked the ability of HISs to increase hepcidin mRNA levels. Furthermore, HIS treatment increased hepcidin biosynthesis in mice and humans. Together, these data indicate that PGRMC1 regulates hepcidin gene expression through an evolutionarily conserved mechanism. These studies have identified drug candidates and potential therapeutic targets for the treatment of diseases of abnormal iron metabolism.


Asunto(s)
Hepcidinas/biosíntesis , Proteínas de la Membrana/fisiología , Receptores de Progesterona/fisiología , Androstanoles/farmacología , Animales , Proteínas Morfogenéticas Óseas/fisiología , Proteínas de Transporte de Catión/análisis , Proteínas de Transporte de Catión/genética , Femenino , Regulación de la Expresión Génica , Células Hep G2 , Hepcidinas/genética , Humanos , Ratones , Mifepristona/farmacología , Progesterona/farmacología , Factor de Transcripción STAT3/fisiología , Transducción de Señal , Pez Cebra
17.
Nat Commun ; 6: 8482, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26442659

RESUMEN

Oxidative stress, a central mediator of cardiovascular disease, results in loss of the prosthetic haem group of soluble guanylate cyclase (sGC), preventing its activation by nitric oxide (NO). Here we introduce Apo-sGC mice expressing haem-free sGC. Apo-sGC mice are viable and develop hypertension. The haemodynamic effects of NO are abolished, but those of the sGC activator cinaciguat are enhanced in apo-sGC mice, suggesting that the effects of NO on smooth muscle relaxation, blood pressure regulation and inhibition of platelet aggregation require sGC activation by NO. Tumour necrosis factor (TNF)-induced hypotension and mortality are preserved in apo-sGC mice, indicating that pathways other than sGC signalling mediate the cardiovascular collapse in shock. Apo-sGC mice allow for differentiation between sGC-dependent and -independent NO effects and between haem-dependent and -independent sGC effects. Apo-sGC mice represent a unique experimental platform to study the in vivo consequences of sGC oxidation and the therapeutic potential of sGC activators.


Asunto(s)
Sistema Cardiovascular/metabolismo , Guanilato Ciclasa/genética , Hemo/genética , Músculo Liso Vascular/metabolismo , Óxido Nítrico/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Animales , Benzoatos/farmacología , Presión Sanguínea/efectos de los fármacos , Sistema Cardiovascular/efectos de los fármacos , Técnicas de Sustitución del Gen , Hipertensión/genética , Hipotensión/inducido químicamente , Hipotensión/genética , Ratones , Ratones Transgénicos , Músculo Liso Vascular/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Guanilil Ciclasa Soluble , Factor de Necrosis Tumoral alfa/farmacología
18.
Circ Res ; 117(9): 793-803, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26259881

RESUMEN

RATIONALE: The regulation of calcium (Ca(2+)) homeostasis by ß-adrenergic receptor (ßAR) activation provides the essential underpinnings of sympathetic regulation of myocardial function, as well as a basis for understanding molecular events that result in hypertrophic signaling and heart failure. Sympathetic stimulation of the ßAR not only induces protein phosphorylation but also activates nitric oxide-dependent signaling, which modulates cardiac contractility. Nonetheless, the role of nitric oxide in ßAR-dependent regulation of Ca(2+) handling has not yet been explicated fully. OBJECTIVE: To elucidate the role of protein S-nitrosylation, a major transducer of nitric oxide bioactivity, on ßAR-dependent alterations in cardiomyocyte Ca(2+) handling and hypertrophy. METHODS AND RESULTS: Using transgenic mice to titrate the levels of protein S-nitrosylation, we uncovered major roles for protein S-nitrosylation, in general, and for phospholamban and cardiac troponin C S-nitrosylation, in particular, in ßAR-dependent regulation of Ca(2+) homeostasis. Notably, S-nitrosylation of phospholamban consequent upon ßAR stimulation is necessary for the inhibitory pentamerization of phospholamban, which activates sarcoplasmic reticulum Ca(2+)-ATPase and increases cytosolic Ca(2+) transients. Coincident S-nitrosylation of cardiac troponin C decreases myocardial sensitivity to Ca(2+). During chronic adrenergic stimulation, global reductions in cellular S-nitrosylation mitigate hypertrophic signaling resulting from Ca(2+) overload. CONCLUSIONS: S-Nitrosylation operates in concert with phosphorylation to regulate many cardiac Ca(2+)-handling proteins, including phospholamban and cardiac troponin C, thereby playing an essential and previously unrecognized role in cardiac Ca(2+) homeostasis. Manipulation of the S-nitrosylation level may prove therapeutic in heart failure.


Asunto(s)
Calcio/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Óxido Nítrico/metabolismo , Receptores Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/farmacología , Aldehído Oxidorreductasas , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Hipertrofia , Immunoblotting , Isoproterenol/farmacología , Ratones Noqueados , Ratones Transgénicos , Mutación , Miocardio/patología , Miocitos Cardíacos/citología , Fosforilación , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Transducción de Señal/efectos de los fármacos , Troponina I/genética , Troponina I/metabolismo
19.
Open Forum Infect Dis ; 2(3): ofv111, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26309894

RESUMEN

Background. Children with cerebral malaria (CM) have high rates of mortality and neurologic sequelae. Nitric oxide (NO) metabolite levels in plasma and urine are reduced in CM. Methods. This randomized trial assessed the efficacy of inhaled NO versus nitrogen (N2) as an adjunctive treatment for CM patients receiving intravenous artesunate. We hypothesized that patients treated with NO would have a greater increase of the malaria biomarker, plasma angiopoietin-1 (Ang-1) after 48 hours of treatment. Results. Ninety-two children with CM were randomized to receive either inhaled 80 part per million NO or N2 for 48 or more hours. Plasma Ang-1 levels increased in both treatment groups, but there was no difference between the groups at 48 hours (P = not significant [NS]). Plasma Ang-2 and cytokine levels (tumor necrosis factor-α, interferon-γ, interleukin [IL]-1ß, IL-6, IL-10, and monocyte chemoattractant protein-1) decreased between inclusion and 48 hours in both treatment groups, but there was no difference between the groups (P = NS). Nitric oxide metabolite levels-blood methemoglobin and plasma nitrate-increased in patients treated with NO (both P < .05). Seven patients in the N2 group and 4 patients in the NO group died. Five patients in the N2 group and 6 in the NO group had neurological sequelae at hospital discharge. Conclusions. Breathing NO as an adjunctive treatment for CM for a minimum of 48 hours was safe, increased blood methemoglobin and plasma nitrate levels, but did not result in a greater increase of plasma Ang-1 levels at 48 hours.

20.
Am J Respir Crit Care Med ; 192(7): 859-72, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26073741

RESUMEN

RATIONALE: Mutations in bone morphogenetic protein receptor type II (BMPR-II) underlie most cases of heritable pulmonary arterial hypertension (PAH). However, disease penetrance is only 20-30%, suggesting a requirement for additional triggers. Inflammation is emerging as a key disease-related factor in PAH, but to date there is no clear mechanism linking BMPR-II deficiency and inflammation. OBJECTIVES: To establish a direct link between BMPR-II deficiency, a consequentially heightened inflammatory response, and development of PAH. METHODS: We used pulmonary artery smooth muscle cells from Bmpr2(+/-) mice and patients with BMPR2 mutations and compared them with wild-type controls. For the in vivo model, we used mice heterozygous for a null allele in Bmpr2 (Bmpr2(+/-)) and wild-type littermates. MEASUREMENTS AND MAIN RESULTS: Acute exposure to LPS increased lung and circulating IL-6 and KC (IL-8 analog) levels in Bmpr2(+/-) mice to a greater extent than in wild-type controls. Similarly, pulmonary artery smooth muscle cells from Bmpr2(+/-) mice and patients with BMPR2 mutations produced higher levels of IL-6 and KC/IL-8 after lipopolysaccharide stimulation compared with controls. BMPR-II deficiency in mouse and human pulmonary artery smooth muscle cells was associated with increased phospho-STAT3 and loss of extracellular superoxide dismutase. Chronic lipopolysaccharide administration caused pulmonary hypertension in Bmpr2(+/-) mice but not in wild-type littermates. Coadministration of tempol, a superoxide dismutase mimetic, ameliorated the exaggerated inflammatory response and prevented development of PAH. CONCLUSIONS: This study demonstrates that BMPR-II deficiency promotes an exaggerated inflammatory response in vitro and in vivo, which can instigate development of pulmonary hypertension.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/deficiencia , Citocinas/biosíntesis , Hipertensión Pulmonar/fisiopatología , Animales , Antioxidantes/uso terapéutico , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Óxidos N-Cíclicos/uso terapéutico , Fenoterol , Predisposición Genética a la Enfermedad , Humanos , Hipertensión Pulmonar/genética , Inmunohistoquímica , Ratones Endogámicos , Marcadores de Spin , Superóxido Dismutasa/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...