Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Nucleic Acids Res ; 50(2): e10, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34734265

RESUMEN

The interplay between three-dimensional chromosome organisation and genomic processes such as replication and transcription necessitates in vivo studies of chromosome dynamics. Fluorescent organic dyes are often used for chromosome labelling in vivo. The mode of binding of these dyes to DNA cause its distortion, elongation, and partial unwinding. The structural changes induce DNA damage and interfere with the binding dynamics of chromatin-associated proteins, consequently perturbing gene expression, genome replication, and cell cycle progression. We have developed a minimally-perturbing, genetically encoded fluorescent DNA label consisting of a (photo-switchable) fluorescent protein fused to the DNA-binding domain of H-NS - a bacterial nucleoid-associated protein. We show that this DNA label, abbreviated as HI-NESS (H-NS-based indicator for nucleic acid stainings), is minimally-perturbing to genomic processes and labels chromosomes in eukaryotic cells in culture, and in zebrafish embryos with preferential binding to AT-rich chromatin.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bioensayo/métodos , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Coloración y Etiquetado/métodos , Animales , Proteínas Bacterianas/genética , Línea Celular , Clonación Molecular , Replicación del ADN , ADN Bacteriano/química , Proteínas de Unión al ADN/genética , Colorantes Fluorescentes , Expresión Génica , Vectores Genéticos , Microscopía Fluorescente
2.
Antimicrob Agents Chemother ; 65(8): e0262820, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34031049

RESUMEN

The ß-lactamase of Mycobacterium tuberculosis, BlaC, is susceptible to inhibition by clavulanic acid. The ability of this enzyme to escape inhibition through mutation was probed using error-prone PCR combined with functional screening in Escherichia coli. The variant that was found to confer the most inhibitor resistance, K234R, as well as variant G132N that was found previously were characterized using X-ray crystallography and nuclear magnetic resonance (NMR) relaxation experiments to probe structural and dynamic properties. The G132N mutant exists in solution in two almost equally populated conformations that exchange with a rate of ca. 88 s-1. The conformational change affects a broad region of the enzyme. The crystal structure reveals that the Asn132 side chain forces the peptide bond between Ser104 and Ile105 in a cis-conformation. The crystal structure suggests multiple conformations for several side chains (e.g., Ser104 and Ser130) and a short loop (positions 214 to 216). In the K234R mutant, the active-site dynamics are significantly diminished with respect to the wild-type enzyme. These results show that multiple evolutionary routes are available to increase inhibitor resistance in BlaC and that active-site dynamics on the millisecond time scale are not required for catalytic function.


Asunto(s)
Mycobacterium tuberculosis , beta-Lactamasas , Ácido Clavulánico/farmacología , Cristalografía por Rayos X , Escherichia coli/genética , Mycobacterium tuberculosis/genética , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-31871087

RESUMEN

The Mycobacterium tuberculosis ß-lactamase BlaC is a broad-spectrum ß-lactamase that can convert a range of ß-lactam antibiotics. Enzymes with low specificity are expected to exhibit active-site flexibility. To probe the motions in BlaC, we studied the dynamic behavior in solution using nuclear magnetic resonance (NMR) spectroscopy. 15N relaxation experiments show that BlaC is mostly rigid on the pico- to nanosecond timescale. Saturation transfer experiments indicate that also on the high-millisecond timescale BlaC is not dynamic. Using relaxation dispersion experiments, clear evidence was obtained for dynamics in the low-millisecond range, with an exchange rate of ca. 860 s-1 The dynamic amide groups are localized in the active site. Upon formation of an adduct with the inhibitor avibactam, extensive line broadening occurs, indicating an increase in magnitude of the active-site dynamics. Furthermore, the rate of the motions increases significantly. Upon reaction with the inhibitor clavulanic acid, similar line broadening is accompanied by duplication of NMR signals, indicative of at least one additional, slower exchange process (exchange rate, kex, of <100 s-1), while for this inhibitor also loss of pico- to nanosecond timescale rigidity is observed for some amides in the α domain. Possible sources of the observed dynamics, such as motions in the omega loop and rearrangements of active-site residues, are discussed. The increase in dynamics upon ligand binding argues against a model of inhibitor binding through conformational selection. Rather, the induced dynamics may serve to maximize the likelihood of sampling the optimal conformation for hydrolysis of the bound ligand.


Asunto(s)
Mycobacterium tuberculosis/enzimología , beta-Lactamasas/química , beta-Lactamasas/metabolismo , Compuestos de Azabiciclo/farmacología , Ácidos Borónicos/farmacología , Dominio Catalítico , Ácido Clavulánico/farmacología , Espectroscopía de Resonancia Magnética , Mycobacterium tuberculosis/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , beta-Lactamasas/genética
4.
Biochemistry ; 56(47): 6257-6267, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29087696

RESUMEN

The rise of multi- and even totally antibiotic resistant forms of Mycobacterium tuberculosis underlines the need for new antibiotics. The pathogen is resistant to ß-lactam compounds due to its native serine ß-lactamase, BlaC. This resistance can be circumvented by administration of a ß-lactamase inhibitor. We studied the interaction between BlaC and the inhibitor clavulanic acid. Our data show hydrolysis of clavulanic acid and recovery of BlaC activity upon prolonged incubation. The rate of clavulanic acid hydrolysis is much higher in the presence of phosphate ions. A specific binding site for phosphate is identified in the active site pocket, both in the crystalline state and in solution. NMR spectroscopy experiments show that phosphate binds to this site with a dissociation constant of 30 mM in the free enzyme. We conclude that inhibition of BlaC by clavulanic acid is reversible and that phosphate ions can promote the hydrolysis of the inhibitor.


Asunto(s)
Ácido Clavulánico/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Fosfatos/farmacología , Tuberculosis/tratamiento farmacológico , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/química , Sitios de Unión , Sinergismo Farmacológico , Humanos , Hidrólisis , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Tuberculosis/microbiología
5.
J Am Chem Soc ; 129(1): 226-33, 2007 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-17199303

RESUMEN

Bacterial copper-containing nitrite reductase catalyzes the reduction of nitrite to nitric oxide as part of the denitrification process. Pseudoazurin interacts with nitrite reductase in a transient fashion to supply the necessary electrons. The redox-state dependence of complex formation between pseudoazurin and nitrite reductase was studied by nuclear magnetic resonance spectroscopy and isothermal titration calorimetry. Binding of pseudoazurin in the reduced state is characterized by the presence of two binding modes, a slow and a fast exchange mode, with a K(d)(app) of 100 microM. In the oxidized state of pseudoazurin, binding occurs in a single fast exchange mode with a similar affinity. Metal-substituted proteins have been used to show that the mode of binding of pseudoazurin is independent of the metal charge of nitrite reductase. Contrary to what was found for other cupredoxins, protonation of the exposed His ligand to the copper of pseudoazurin, His81, does not appear to be involved directly in the dual binding mode of the reduced form. A model assuming the presence of a minor form of pseudoazurin is proposed to explain the behavior of the complex in the reduced state.


Asunto(s)
Azurina/química , Proteínas Bacterianas/química , Nitrito Reductasas/química , Alcaligenes faecalis/enzimología , Secuencia de Aminoácidos , Calorimetría , Cobre/química , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Oxidación-Reducción , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA