RESUMEN
Hyperhomocysteinemia and vitamin B12 deficiency have been reported in patients with phenylketonuria. In this study, total homocysteine (tHcy) and methylmalonic acid (MMA) levels were analyzed in samples from 25 phenylketonuria (PKU) patients. Comparisons were made between pre- and post-treatment values (n= 3); on treatment values, between periods with high and normal/low phenylalanine (Phe) levels (n= 20); and in women before, during and after pregnancy (n= 3). THcy levels decreased after treating PKU with metabolic formula (p=0.014). Except for a pregnant woman before pregnancy, none of the patients had tHcy values above the normal range. In fact, tHcy was < 5 µmol/L in 34% of the samples. We observed a decrease in Phe, tHcy, and tyrosine levels during pregnancy. MMA levels did not differ significantly, with values remaining in the normal range. These data indicate that there was no B12 deficiency in patients who adhere to the diet. In conclusion, in PKU patients treated with metabolic formula, tHcy is frequently not elevated, remaining even in the lower normal range in some patients. Thus, clinical follow-up and adherence to dietary treatment are crucial to prevent B12 deficiency.
RESUMEN
Two siblings, presenting with a neurometabolic phenotype, were identified with 5, 10-methenyltetrahydrofolate synthetase (MTHFS) deficiency. Whole genome sequencing in both patients demonstrated an homozygous MTHFS variant NM_006441.3(MTHFS):c.434G > A, p.Arg145Gin, which has been described before. At baseline, both patients showed moderate hyperhomocysteinemia, decreased 5-methyltetrahydrofolate (5MTHF), and increased 5-formyltetrahydrofolate (5-FTHF) in whole blood. In CSF, 5MTHF levels were in the low-normal range and 5-FTHF was strongly increased. In our novel enzyme assay, MTHFS activity was deficient in cultured fibroblasts in both sisters. Oral treatment was initiated with escalating dose of 5-methyltetrahydrofolate (5MTHF) up to 12 mg and hydroxycobalamin 5 mg daily. Plasma homocysteine normalized and 5MTHF became elevated in the blood of both patients. The elevated 5FTHF levels increased further on treatment in blood and CSF. This regimen resulted in some clinical improvement of patient 1. In patient 2, the clinical benefits of 5MTHF supplementation were less obvious. It seems plausible that the alleviation of the deficient 5MTHF levels and normalization of homocysteine in blood are of some clinical benefit. On the other hand, the very high levels of 5FTHF may well be detrimental and may prompt us to decrease the dose of 5MTHF. In addition, we hypothesize that the crippled MTHFS enzyme may destabilize the purinosome, which is presumably not ameliorated by 5MTHF.
RESUMEN
BACKGROUND/AIMS: Having type 2 diabetes (T2D) in combination with being overweight results in an additional increase in cardiovascular disease (CVD) risk. In addition, T2D and obesity are associated with increased levels of total homocysteine (tHcy), possibly contributing to the CVD risk. Weight loss dieting has positive effects on several CVD risk factors, but whether it affects tHcy remains unclear. Therefore, the aim of this study was to determine the effect of a calorie restricted diet on tHcy in overweight people with T2D. METHODS: In this post-hoc analysis of the POWER study, adults with T2D and a BMI greater than 27 kg/m² were included from the outpatient diabetes clinic of the Erasmus Medical Center, Rotterdam. The patients were subjected to a very low-calorie diet with fortified meal replacements for 20 weeks. Before and after this intervention, blood samples were collected to measure tHcy and other CVD risk factors like glycaemic and lipid parameters. RESULTS: 161 overweight participants with T2D were included, with a mean age of 54 years (range 26-74), mean weight of 104.6 ± 19.9 kg and mean HbA1c of 62.7 ± 14.3 mmol/mol. At baseline, men displayed higher tHcy than women, and tHcy level was positively correlated with body weight and triglyceride levels, while it was negatively correlated with renal function and HDL cholesterol. During the intervention, bodyweight was reduced by a mean of 9.7% (from 104.6 ± 19.9 to 94.5 ± 18.1 kg p < 0.001), and all measured glycaemic and lipid blood parameters improved significantly. However, tHcy remained unchanged (from 12.1 ± 4.1 to 12.1 ± 4.2 umol/L, p = 0.880). The change in tHcy during the intervention was negatively associated with the change in weight and BMI (p = 0.01 and p = 0.008, respectively). People who lost < 10 kg (n = 92) had a mean tHcy change of -0.47 umol/L, while people who lost more than ≥ 10 kg (n = 69) had a mean tHcy change of 0.60 umol/L (p = 0.021). CONCLUSION: In conclusion, our data show that a calorie restricted diet does not affect tHcy in people with T2D and obesity, despite the use of meal replacements fortified with folic acid and vitamin B12. Our data showed a negative correlation between change in tHcy levels and weight loss, suggesting that people who lost more weight (> 10 kg) showed an increase in tHcy. Future studies should explore the potential increase in tHcy induced by weight loss dieting and target the question if tHcy reduction strategies during weight loss could be clinically beneficial.
Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Masculino , Adulto , Humanos , Femenino , Persona de Mediana Edad , Anciano , Sobrepeso , Obesidad , Dieta Reductora/métodos , Ácido Fólico , Vitamina B 12 , Lípidos , Pérdida de Peso , HomocisteínaRESUMEN
Untargeted metabolomics (UM) is increasingly being deployed as a strategy for screening patients that are suspected of having an inborn error of metabolism (IEM). In this study, we examined the potential of existing outlier detection methods to detect IEM patient profiles. We benchmarked 30 different outlier detection methods when applied to three untargeted metabolomics datasets. Our results show great differences in IEM detection performances across the various methods. The methods DeepSVDD and R-graph performed most consistently across the three metabolomics datasets. For datasets with a more balanced number of samples-to-features ratio, we found that AE reconstruction error, Mahalanobis and PCA reconstruction error also performed well. Furthermore, we demonstrated the importance of a PCA transform prior to applying an outlier detection method since we observed that this increases the performance of several outlier detection methods. For only one of the three metabolomics datasets, we observed clinically satisfying performances for some outlier detection methods, where we were able to detect 90% of the IEM patient samples while detecting no false positives. These results suggest that outlier detection methods have the potential to aid the clinical investigator in routine screening for IEM using untargeted metabolomics data, but also show that further improvements are needed to ensure clinically satisfying performances.
RESUMEN
The integration of metabolomics data with sequencing data is a key step towards improving the diagnostic process for finding the disease-causing genetic variant(s) in patients suspected of having an inborn error of metabolism (IEM). The measured metabolite levels could provide additional phenotypical evidence to elucidate the degree of pathogenicity for variants found in genes associated with metabolic processes. We present a computational approach, called Reafect, that calculates for each reaction in a metabolic pathway a score indicating whether that reaction is deficient or not. When calculating this score, Reafect takes multiple factors into account: the magnitude and sign of alterations in the metabolite levels, the reaction distances between metabolites and reactions in the pathway, and the biochemical directionality of the reactions. We applied Reafect to untargeted metabolomics data of 72 patient samples with a known IEM and found that in 81% of the cases the correct deficient enzyme was ranked within the top 5% of all considered enzyme deficiencies. Next, we integrated Reafect with Combined Annotation Dependent Depletion (CADD) scores (a measure for gene variant deleteriousness) and ranked the metabolic genes of 27 IEM patients. We observed that this integrated approach significantly improved the prioritization of the genes containing the disease-causing variant when compared with the two approaches individually. For 15/27 IEM patients the correct affected gene was ranked within the top 0.25% of the set of potentially affected genes. Together, our findings suggest that metabolomics data improves the identification of affected genes in patients suffering from IEM.
Asunto(s)
Errores Innatos del Metabolismo , Metabolómica , Genómica , Humanos , Redes y Vías Metabólicas/genética , Errores Innatos del Metabolismo/diagnósticoRESUMEN
Patient registries for rare diseases enable systematic data collection and can also be used to facilitate postauthorization safety studies (PASS) for orphan drugs. This study evaluates the PASS for betaine anhydrous (Cystadane), conducted as public private partnership (PPP) between the European network and registry for homocystinurias and methylation defects and the marketing authorization holder (MAH). Data were prospectively collected, 2013-2016, in a noninterventional, international, multicenter, registry study. Putative adverse and severe adverse events were reported to the MAH's pharmacovigilance. In total, 130 individuals with vitamin B6 nonresponsive (N = 54) and partially responsive (N = 7) cystathionine beta-synthase (CBS) deficiency, as well as 5,10-methylenetetrahydrofolate reductase (MTHFR; N = 21) deficiency and cobalamin C (N = 48) disease were included. Median (range) duration of treatment with betaine anhydrous was 6.8 (0-9.8) years. The prescribed betaine dose exceeded the recommended maximum (6 g/day) in 49% of individuals older than 10 years because of continued dose adaptation to weight; however, with disease-specific differences (minimum: 31% in B6 nonresponsive CBS deficiency, maximum: 67% in MTHFR deficiency). Despite dose escalation no new or potential risk was identified. Combined disease-specific treatment decreased mean ± SD total plasma homocysteine concentrations from 203 ± 116 to 81 ± 51 µmol/L (p < 0.0001), except in MTHFR deficiency. Recommendations for betaine anhydrous dosage were revised for individuals ≥ 10 years. PPPs between MAH and international scientific consortia can be considered a reliable model for implementing a PASS, reutilizing well-established structures and avoiding data duplication and fragmentation.
Asunto(s)
Homocistinuria , Trastornos Psicóticos , Betaína/efectos adversos , Cistationina betasintasa , Homocisteína , Homocistinuria/tratamiento farmacológico , Humanos , Metilenotetrahidrofolato Reductasa (NADPH2)/deficiencia , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Espasticidad MuscularRESUMEN
One-carbon metabolism (1C metabolism) is of paramount importance for cell metabolism and mammalian development. It is involved in the synthesis or modification of a wide variety of compounds such as proteins, lipids, purines, nucleic acids and neurotransmitters. We describe here the evolution of expression of genes related to 1C metabolism during liver and brain ontogeny in mouse. The level of expression of 30 genes involved in 1C metabolism was quantified by RT-qPCR in liver and brain tissues of OF1 mice at E9, E11, E13, E15, E17, P0, P3, P5, P10, P15 developmental stages and in adults. In the liver, hierarchical clustering of the gene expression patterns revealed five distinct clades of genes with a first bifurcating hierarchy distinguishing two main developmental stages before and after E15. In the brain most of the 1C metabolism genes are expressed but at a lower levels. The gene expression of enzymes involved in 1C metabolism show dramatic changes during development that are tissue specific. mRNA expression patterns of all major genes involved in 1C metabolism in liver and brain provide clues about the methylation demand and methylation pathways during embryonic development.
Asunto(s)
Encéfalo/embriología , Carbono/metabolismo , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Hígado/embriología , Animales , Femenino , Ratones , EmbarazoRESUMEN
Early detection of congenital disorders by newborn screening (NBS) programs is essential to prevent or limit disease manifestation in affected neonates. These programs balance between the detection of the highest number of true cases and the lowest number of false-positives. In this case report, we describe four unrelated cases with a false-positive NBS result for very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD). Three neonates presented with decreased but not deficient VLCAD enzyme activity and two of them carried a single heterozygous ACADVL c.1844G>A mutation. Initial biochemical investigations after positive NBS referral in these infants revealed acylcarnitine and organic acid profiles resembling those seen in multiple acyl-CoA dehydrogenase deficiency (MADD). Genetic analysis did not reveal any pathogenic mutations in the genes encoding the electron transfer flavoprotein (ETF alpha and beta subunits) nor in ETF dehydrogenase. Subsequent further diagnostics revealed decreased levels of riboflavin in the newborns and oral riboflavin administration normalized the MADD-like biochemical profiles. During pregnancy, the mothers followed a vegan, vegetarian or lactose-free diet which probably caused alimentary riboflavin deficiency in the neonates. This report demonstrates that a secondary (alimentary) maternal riboflavin deficiency in combination with reduced VLCAD activity in the newborns can result in an abnormal VLCADD/MADD acylcarnitine profile and can cause false-positive NBS. We hypothesize that maternal riboflavin deficiency contributed to the false-positive VLCADD neonatal screening results.
RESUMEN
Cystathionine ß-synthase (CBS) deficiency has a wide clinical spectrum, ranging from neurodevelopmental problems, lens dislocation and marfanoid features in early childhood to adult onset disease with predominantly thromboembolic complications. We have analysed clinical and laboratory data at the time of diagnosis in 328 patients with CBS deficiency from the E-HOD (European network and registry for Homocystinurias and methylation Defects) registry. We developed comprehensive criteria to classify patients into four groups of pyridoxine responsivity: non-responders (NR), partial, full and extreme responders (PR, FR and ER, respectively). All groups showed overlapping concentrations of plasma total homocysteine while pyridoxine responsiveness inversely correlated with plasma/serum methionine concentrations. The FR and ER groups had a later age of onset and diagnosis and a longer diagnostic delay than NR and PR patients. Lens dislocation was common in all groups except ER but the age of dislocation increased with increasing responsiveness. Developmental delay was commonest in the NR group while no ER patient had cognitive impairment. Thromboembolism was the commonest presenting feature in ER patients, whereas it was least likely at presentation in the NR group. This probably is due to the differences in ages at presentation: all groups had a similar number of thromboembolic events per 1000 patient-years. Clinical severity of CBS deficiency depends on the degree of pyridoxine responsiveness. Therefore, a standardised pyridoxine-responsiveness test in newly diagnosed patients and a critical review of previous assessments is indispensable to ensure adequate therapy and to prevent or reduce long-term complications.
Asunto(s)
Cistationina betasintasa/deficiencia , Homocistinuria/diagnóstico , Homocistinuria/tratamiento farmacológico , Piridoxina/uso terapéutico , Adolescente , Adulto , Anciano , Niño , Preescolar , Diagnóstico Tardío , Europa (Continente) , Femenino , Homocistinuria/enzimología , Humanos , Lactante , Modelos Lineales , Masculino , Metionina/sangre , Persona de Mediana Edad , Fenotipo , Sistema de Registros , Índice de Severidad de la Enfermedad , Adulto JovenRESUMEN
Untargeted metabolomics is an emerging technology in the laboratory diagnosis of inborn errors of metabolism (IEM). Analysis of a large number of reference samples is crucial for correcting variations in metabolite concentrations that result from factors, such as diet, age, and gender in order to judge whether metabolite levels are abnormal. However, a large number of reference samples requires the use of out-of-batch samples, which is hampered by the semi-quantitative nature of untargeted metabolomics data, i.e., technical variations between batches. Methods to merge and accurately normalize data from multiple batches are urgently needed. Based on six metrics, we compared the existing normalization methods on their ability to reduce the batch effects from nine independently processed batches. Many of those showed marginal performances, which motivated us to develop Metchalizer, a normalization method that uses 10 stable isotope-labeled internal standards and a mixed effect model. In addition, we propose a regression model with age and sex as covariates fitted on reference samples that were obtained from all nine batches. Metchalizer applied on log-transformed data showed the most promising performance on batch effect removal, as well as in the detection of 195 known biomarkers across 49 IEM patient samples and performed at least similar to an approach utilizing 15 within-batch reference samples. Furthermore, our regression model indicates that 6.5-37% of the considered features showed significant age-dependent variations. Our comprehensive comparison of normalization methods showed that our Log-Metchalizer approach enables the use out-of-batch reference samples to establish clinically-relevant reference values for metabolite concentrations. These findings open the possibilities to use large scale out-of-batch reference samples in a clinical setting, increasing the throughput and detection accuracy.
RESUMEN
BACKGROUND: Biallelic pathogenic variants in CBS gene cause the most common form of homocystinuria, the classical homocystinuria (HCU). The worldwide prevalence of HCU is estimated to be 0.82:100,000 [95% CI, 0.39-1.73:100,000] according to clinical records and 1.09:100,000 [95% CI, 0.34-3.55:100,000] by neonatal screening. In this study, we aimed to estimate the minimal worldwide incidence of HCU. METHODS: The 25 most common pathogenic alleles of HCU were identified through a literature review. The incidence of HCU was estimated based on the frequency of these common pathogenic alleles in a large genomic database (gnomAD). RESULTS: The minimum worldwide incidence of HCU was estimated to be ~0.38:100,000, and the incidence was higher in Europeans non-Finnish (~0.72:100,000) and Latin Americans (~0.45:100,000) and lower in Africans (~0.20:100,000) and Asians (~0.02:100,000). CONCLUSION: Our data are in accordance with the only published metanalysis on this topic. To our surprise, the observed incidence of HCU in Europeans was much lower than those described in articles exploring small populations from northern Europe but was similar to the incidence described on the basis of neonatal screening programs. In our opinion, this large dataset analyzed and its population coverage gave us greater precision in the estimation of incidence.
Asunto(s)
Cistationina betasintasa/genética , Frecuencia de los Genes , Homocistinuria/genética , Adulto , Bases de Datos Genéticas/estadística & datos numéricos , Europa (Continente) , Homocistinuria/epidemiología , Homocistinuria/etnología , Humanos , Incidencia , Recién Nacido , Tamizaje NeonatalRESUMEN
PURPOSE: There is a strong association between severe hyperhomocysteinemia and myopia. Thus we studied the hypothesis that even moderately increased levels of homocysteine (Hcy) might be a potentially treatable risk factor for myopia. METHODS: The Gutenberg Health Study (GHS) is a population-based, prospective, observational cohort study in Germany, including 15,010 participants aged between 35 and 74 at recruitment. The baseline examination was conducted from 2007-2012. Refraction was measured using autorefraction (HARK 599, Carl Zeiss AG, Jena, Germany). Hcy was measured by an immunoassay. We included only phakic participants without a history of corneal surgery or corneal laser treatment. We used linear regression models to evaluate the potential association between Hcy and refraction at baseline, and between Hcy and change in refraction between baseline and 5-year-follow-up examination. We used generalized estimating equation models to account for the correlation between fellow eyes. RESULTS: We included 13,749 participants, categorized as having no myopia (spherical equivalent > -0.75 D, 65.2%), low myopia (-0.75 D--2.75 D, 21.5%), moderate myopia (-3.00 D- 5.75 D, 9.8%) and high myopia (≤ -6 D, 3.5%). Median Hcy levels were similar in all groups (µmol/l). We observed no association of Hcy with refraction or 5-year change in refraction in the models adjusted for age, sex and socioeconomic status. CONCLUSION: We found no evidence for an association of Hcy levels and refractive error.
Asunto(s)
Homocisteína/sangre , Errores de Refracción/sangre , Adulto , Anciano , Femenino , Alemania , Humanos , Hiperhomocisteinemia/sangre , Hiperhomocisteinemia/complicaciones , Masculino , Persona de Mediana Edad , Miopía/sangre , Miopía/etiología , Estudios Prospectivos , Factores de RiesgoRESUMEN
CBS deficient individuals undergoing betaine supplementation without sufficient dietary methionine restriction can develop severe hypermethioninemia and brain edema. Brain edema has also been observed in individuals with severe hypermethioninemia without concomitant betaine supplementation. We systematically evaluated reports from 11 published and 4 unpublished patients with CBS deficiency and from additional four cases of encephalopathy in association with elevated methionine. We conclude that, while betaine supplementation does greatly exacerbate methionine accumulation, the primary agent causing brain edema is methionine rather than betaine. Clinical signs of increased intracranial pressure have not been seen in patients with plasma methionine levels below 559 µmol/L but occurred in one patient whose levels did not knowingly exceed 972 µmol/L at the time of manifestation. While levels below 500 µmol/L can be deemed safe it appears that brain edema can develop with plasma methionine levels close to 1000 µmol/L. Patients with CBS deficiency on betaine supplementation need to be regularly monitored for concordance with their dietary plan and for plasma methionine concentrations. Recurrent methionine levels above 500 µmol/L should alert clinicians to check for clinical signs and symptoms of brain edema and review dietary methionine intake. Levels approaching 1000 µmol/L do increase the risk of complications and levels exceeding 1000 µmol/L, despite best dietetic efforts, should be acutely addressed by reducing the prescribed betaine dose.
RESUMEN
Routine diagnostic screening of inborn errors of metabolism (IEM) is currently performed by different targeted analyses of known biomarkers. This approach is time-consuming, targets a limited number of biomarkers and will not identify new biomarkers. Untargeted metabolomics generates a global metabolic phenotype and has the potential to overcome these issues. We describe a novel, single platform, untargeted metabolomics method for screening IEM, combining semi-automatic sample preparation with pentafluorophenylpropyl phase (PFPP)-based UHPLC- Orbitrap-MS. We evaluated analytical performance and diagnostic capability of the method by analysing plasma samples of 260 controls and 53 patients with 33 distinct IEM. Analytical reproducibility was excellent, with peak area variation coefficients below 20% for the majority of the metabolites. We illustrate that PFPP-based chromatography enhances identification of isomeric compounds. Ranked z-score plots of metabolites annotated in IEM samples were reviewed by two laboratory specialists experienced in biochemical genetics, resulting in the correct diagnosis in 90% of cases. Thus, our untargeted metabolomics platform is robust and differentiates metabolite patterns of different IEMs from those of controls. We envision that the current approach to diagnose IEM, using numerous tests, will eventually be replaced by untargeted metabolomics methods, which also have the potential to discover novel biomarkers and assist in interpretation of genetic data.
RESUMEN
INTRODUCTION: Biotinidase deficiency (BD), an autosomal recessive disease, is classified into profound (activity <10%) or partial BD (activity 10-30%). The most frequent variant in patients worldwide is c.1330Gâ¯>â¯C (p.Asp444His), which is associated with partial BD. In vivo studies indicate that this variant reduces the biotinidase activity by 50%. The objective of this study was to evaluate the in vitro effect of p.Asp444His and of five novel variants identified among Brazilian individuals showing low activity of biotinidase in serum. METHODS: The variants c.119â¯Tâ¯>â¯C (p.Leu40Pro), c.479Gâ¯>â¯A (p.Cys160Tyr), c.664Gâ¯>â¯A (p.Asp222Asn), c.1330Gâ¯>â¯C (p.Asp444His), c.1337â¯Tâ¯>â¯C (p.Leu446Pro), c.1466Aâ¯>â¯G (p.Asn489Ser) and the wild type (wt) BTD gene were expressed in HEK 293 cells. Biotinidase activity was quantified by colorimetric method in cells homogenates and culture medium. The wtBTD activity was considered 100%. RESULTS: The p.Leu40Pro, p.Cys160Tyr and p.Leu446Pro variants were associated to impaired biotinidase activity (activity in cells: 33%, 14%, 0%, respectively; activity in medium: 7%, 0.3%, 2%, respectively) and undetectable amount of protein in intra and extracellular space. The p.Asn489Ser variant had these effects restricted to the extracellular space (activity in medium: 43%), and the p.Asp222Asn variant showed normal activity. The expression of p.Asp444His variant resulted in detectable protein and slightly reduced activity only in cells (activity in cells: 46%; activity in medium: 115%). CONCLUSION: Our findings suggest that the p.Leu40Pro, p.Cys160Tyr and p.Leu446Pro variants are deleterious; the p.Asn489Ser is probably related to a mild biochemical phenotype; and p.Asp222Asn variant is probably not deleterious. The p.Asp444His variant seems to code for a protein with variable activity.
Asunto(s)
Deficiencia de Biotinidasa/genética , Biotinidasa/genética , Biotinidasa/metabolismo , Variación Genética , Alelos , Colorimetría , Expresión Génica , Células HEK293 , Humanos , MutaciónRESUMEN
Classical homocystinuria is a recessive inborn error of metabolism caused by mutations in the cystathionine beta-synthase (CBS) gene. The highest incidence of CBS deficiency in the world is found in the country of Qatar due to the combination of high rates of consanguinity and the presence of a founder mutation, c.1006C>T (p.R336C). This mutation does not respond to pyridoxine and is considered severe. Here we describe the creation of a mouse that is null for the mouse Cbs gene and expresses human p.R336C CBS from a zinc-inducible transgene (Tg-R336C Cbs -/- ). Zinc-treated Tg-R336C Cbs -/- mice have extreme elevation in both serum total homocysteine (tHcy) and liver tHcy compared with control transgenic mice. Both the steady-state protein levels and CBS enzyme activity levels in liver lysates from Tg-R336C Cbs -/- mice are significantly reduced compared to that found in Tg-hCBS Cbs -/- mice expressing wild-type human CBS. Treatment of Tg-R336C Cbs -/- mice with the proteasome inhibitor bortezomib results in stabilization of liver CBS protein and an increase in activity to levels found in corresponding Tg-hCBS Cbs -/- wild type mice. Surprisingly, serum tHcy did not fully correct even though liver enzyme activity was as high as control animals. This discrepancy is explained by in vitro enzymatic studies of mouse liver extracts showing that p.R336C causes reduced binding affinity for the substrate serine by almost 7-fold and significantly increased dependence on pyridoxal phosphate in the reaction buffer. These studies demonstrate that the p.R336C alteration effects both protein stability and substrate/cofactor binding.
Asunto(s)
Cistationina betasintasa/genética , Homocistinuria/genética , Alelos , Animales , Bortezomib/farmacología , Análisis Mutacional de ADN , Femenino , Homocisteína/sangre , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Inhibidores de Proteasoma/química , Piridoxina/químicaRESUMEN
Classical homocystinuria (HCU) is the most common inborn error of metabolism in Qatar, with an incidence of 1:1800, and is caused by the Qatari founder p.R336C mutation in the CBS gene. This study describes the natural history and clinical manifestations of HCU in the Qatari population. A single center study was performed between 2016 and 2017 in 126 Qatari patients, from 82 families. Detailed clinical and biochemical data were collected, and Stanford-Binet intelligence, quality of life and adherence to treatment assessments were conducted prospectively. Patients were assigned to one of three groups, according to the mode of diagnosis: (a) late diagnosis group (LDG), (b) family screening group (FSG), and (c) newborn screening group (NSG). Of the 126 patients, 69 (55%) were in the LDG, 44 (35%) in the NSG, and 13 (10%) in the FSG. The leading factors for diagnosis in the LDG were ocular manifestations (49%), neurological manifestations (45%), thromboembolic events (4%), and hyperactivity and behavioral changes (1%). Both FSG and NSG groups were asymptomatic at time of diagnosis. NSG had significantly higher intelligence quotient, quality of life, and adherence values compared with the LDG. The LDG and FSG had significantly higher methionine levels than the NSG. The LDG also had significantly higher total homocysteine levels than the NSG and FSG. Regression analysis confirmed these results even when adjusting for age at diagnosis, current age, or adherence. These findings increase the understanding of the natural history of HCU and highlight the importance of early diagnosis and treatment. SYNOPSIS: A study in 126 Qatari patients with HCU, including biochemical, clinical, and other key assessments, reveals that patients with a late clinical diagnosis have a poorer outcome, hereby highlighting the importance of early diagnosis and treatment.
Asunto(s)
Cistationina betasintasa/genética , Homocistinuria/diagnóstico , Homocistinuria/genética , Adolescente , Adulto , Niño , Preescolar , Cistationina betasintasa/deficiencia , Diagnóstico Precoz , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Tamizaje Neonatal , Qatar , Análisis de Regresión , Adulto JovenRESUMEN
PURPOSE: To assess how the current practice of newborn screening (NBS) for homocystinurias compares with published recommendations. METHODS: Twenty-two of 32 NBS programmes from 18 countries screened for at least one form of homocystinuria. Centres provided pseudonymised NBS data from patients with cystathionine beta-synthase deficiency (CBSD, n = 19), methionine adenosyltransferase I/III deficiency (MATI/IIID, n = 28), combined remethylation disorder (cRMD, n = 56) and isolated remethylation disorder (iRMD), including methylenetetrahydrofolate reductase deficiency (MTHFRD) (n = 8). Markers and decision limits were converted to multiples of the median (MoM) to allow comparison between centres. RESULTS: NBS programmes, algorithms and decision limits varied considerably. Only nine centres used the recommended second-tier marker total homocysteine (tHcy). The median decision limits of all centres were ≥ 2.35 for high and ≤ 0.44 MoM for low methionine, ≥ 1.95 for high and ≤ 0.47 MoM for low methionine/phenylalanine, ≥ 2.54 for high propionylcarnitine and ≥ 2.78 MoM for propionylcarnitine/acetylcarnitine. These decision limits alone had a 100%, 100%, 86% and 84% sensitivity for the detection of CBSD, MATI/IIID, iRMD and cRMD, respectively, but failed to detect six individuals with cRMD. To enhance sensitivity and decrease second-tier testing costs, we further adapted these decision limits using the data of 15 000 healthy newborns. CONCLUSIONS: Due to the favorable outcome of early treated patients, NBS for homocystinurias is recommended. To improve NBS, decision limits should be revised considering the population median. Relevant markers should be combined; use of the postanalytical tools offered by the CLIR project (Collaborative Laboratory Integrated Reports, which considers, for example, birth weight and gestational age) is recommended. tHcy and methylmalonic acid should be implemented as second-tier markers.
Asunto(s)
Homocistinuria/diagnóstico , Acetilcarnitina/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Carnitina/análogos & derivados , Carnitina/metabolismo , Femenino , Glicina N-Metiltransferasa/deficiencia , Glicina N-Metiltransferasa/metabolismo , Homocisteína/metabolismo , Homocistinuria/metabolismo , Humanos , Recién Nacido , Masculino , Metionina/metabolismo , Metilenotetrahidrofolato Reductasa (NADPH2)/deficiencia , Metilenotetrahidrofolato Reductasa (NADPH2)/metabolismo , Ácido Metilmalónico/metabolismo , Espasticidad Muscular/diagnóstico , Espasticidad Muscular/metabolismo , Tamizaje Neonatal/métodos , Fenilalanina/metabolismo , Trastornos Psicóticos/diagnóstico , Trastornos Psicóticos/metabolismoRESUMEN
Homocystinuria is a rare inborn error of methionine metabolism caused by cystathionine ß-synthase (CBS) deficiency. The prevalence of homocystinuria in Qatar is 1:1,800 births, mainly due to a founder Qatari missense mutation, c.1006C>T; p.R336C (p.Arg336Cys). We characterized the structure-function relationship of the p.R336C-mutant protein and investigated the effect of different chemical chaperones to restore p.R336C-CBS activity using three models: in silico, ΔCBS yeast, and CRISPR/Cas9 p.R336C knock-in HEK293T and HepG2 cell lines. Protein modeling suggested that the p.R336C induces severe conformational and structural changes, perhaps influencing CBS activity. Wild-type CBS, but not the p.R336C mutant, was able to restore the yeast growth in ΔCBS-deficient yeast in a complementation assay. The p.R336C knock-in HEK293T and HepG2 cells decreased the level of CBS expression and reduced its structural stability; however, treatment of the p.R336C knock-in HEK293T cells with betaine, a chemical chaperone, restored the stability and tetrameric conformation of CBS, but not its activity. Collectively, these results indicate that the p.R336C mutation has a deleterious effect on CBS structure, stability, and activity, and using the chemical chaperones approach for treatment could be ineffective in restoring p.R336C CBS activity.
Asunto(s)
Cistationina betasintasa/genética , Homocistinuria/genética , Chaperonas Moleculares/genética , Proteínas Mutantes/genética , Simulación por Computador , Cistationina betasintasa/química , Estabilidad de Enzimas , Regulación Enzimológica de la Expresión Génica/genética , Células HEK293 , Células Hep G2 , Homocistinuria/metabolismo , Homocistinuria/patología , Humanos , Metionina/metabolismo , Chaperonas Moleculares/química , Proteínas Mutantes/química , Mutación Missense/genética , Pliegue de Proteína , Estructura Terciaria de Proteína , Qatar , Relación Estructura-ActividadRESUMEN
Adenosine kinase (ADK) deficiency (OMIM [online mendelian inheritance in man]: 614300) is an autosomal recessive disorder of adenosine and methionine metabolism, with a unique clinical phenotype, mainly involving the central nervous system and dysmorphic features. Patients usually present early in life with sepsis-like symptoms, respiratory difficulties, and neonatal jaundice. Subsequently, patients demonstrate hypotonia and global developmental delay. Biochemically, methionine is elevated with normal homocysteine levels and the diagnosis is confirmed through molecular analysis of the ADK gene. There is no curative treatment; however, a methionine-restricted diet has been tried with variable outcomes. Herein, we report a 4-year-old Saudi female with global developmental delay, hypotonia, and dysmorphic features. Interestingly, she has a tall stature, developmental dysplasia of the hip, optic nerve gliosis, and tigroid fundus. We found a mutation not reported previously and we compared the current case with previously reported cases. We alert clinicians to consider ADK deficiency in any neonate presenting with global developmental delay, hypotonia, dysmorphic features, and high methionine levels.