RESUMEN
In our hands, efficient access to the 4-amino-3-carboxamide disubstituted pyridine-2(1H)-one kinase hinge-binder motif proved to be more challenging than anticipated requiring a significant investment in route scouting and optimization. This full paper focuses on the synthesis issues that we encountered during our route exploration and the original solutions we found that helped us to identify two optimized library-style processes to prepare our large kinase inhibitor library.
RESUMEN
We report a highly enantioselective catalytic protonation of bis-silyl ketene acetals. Our method delivers α-branched carboxylic acids, including nonsteroidal anti-inflammatory arylpropionic acids such as Ibuprofen, in high enantiomeric purity and high yields. The process can be incorporated in an overall deracemization of α-branched carboxylic acids, involving a double deprotonation and silylation followed by the catalytic asymmetric protonation.
RESUMEN
A sequence of oxidative cleavage/double nitroaldol condensation followed by a few simple synthetic transformations can lead to polyhydroxylated di- and triaminocyclohexanes from a readily available bicyclic hydrazine. This new synthetic route provides a simple and general access to densely substituted privileged scaffolds or fragments with a perfect control of their relative configuration.
RESUMEN
Herein we describe the development of a catalytic enantioselective alkynylogous Mukaiyama aldol reaction. The reaction is catalyzed by a newly designed chiral disulfonimide and delivers chiral allenoates in high yields and with excellent regio-, diastereo-, and enantioselectivity. Our process tolerates a broad range of aldehydes in combination with diverse alkynyl-substituted ketene acetals. The reaction products can be readily derivatized to furnish a variety of highly substituted enantiomerically enriched building blocks.
RESUMEN
The human immunodeficiency virusâ 1 (HIV-1) replication cycle is finely tuned with many important steps involving RNA-RNA or protein-RNA interactions, all of them being potential targets for the development of new antiviral compounds. This cycle can also be considered as a good benchmark for the evaluation of early-stage strategies aiming at designing drugs that bind to RNA, with the possibility to correlate in vitro activities with antiviral properties. In this review, we highlight different approaches developed to interfere with four important steps of the HIV-1 replication cycle: the early stage of reverse transcription, the transactivation of viral transcription, the nuclear export of partially spliced transcripts and the dimerization step.
Asunto(s)
Fármacos Anti-VIH/farmacología , Antivirales/farmacología , ARN Viral/efectos de los fármacos , Animales , Diseño de Fármacos , Humanos , Modelos MolecularesRESUMEN
A sequence of oxidative cleavage/reductive amination/hydrogenolysis enables the preparation of N-substituted cis-3,5-diaminopiperidines from a readily available bicyclic hydrazine. This new synthetic route provides a simple and general access to RNA-friendly fragments with a good chemical diversity.