Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Med Genet ; 60(12): 1218-1223, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37460202

RESUMEN

BACKGROUND: Cancer predisposition syndromes (CPSs) are responsible for at least 10% of cancer diagnoses in children and adolescents, most of which are not clinically recognised prior to cancer diagnosis. A variety of clinical screening guidelines are used in healthcare settings to help clinicians detect patients who have a higher likelihood of having a CPS. The McGill Interactive Pediatric OncoGenetic Guidelines (MIPOGG) is an electronic health decision support tool that uses algorithms to help clinicians determine if a child/adolescent diagnosed with cancer should be referred to genetics for a CPS evaluation. METHODS: This study assessed MIPOGG's performance in identifying Li-Fraumeni, DICER1, Constitutional mismatch repair deficiency and Gorlin (nevoid basal cell carcinoma) syndromes in a retrospective series of 84 children diagnosed with cancer and one of these four CPSs in Canadian hospitals over an 18-year period. RESULTS: MIPOGG detected 82 of 83 (98.8%) evaluable patients with any one of these four genetic conditions and demonstrated an appropriate rationale for suggesting CPS evaluation. When compared with syndrome-specific clinical screening criteria, MIPOGG's ability to correctly identify children with any of the four CPSs was equivalent to, or outperformed, existing clinical criteria respective to each CPS. CONCLUSION: This study adds evidence that MIPOGG is an appropriate tool for CPS screening in clinical practice. MIPOGG's strength is that it starts with a specific cancer diagnosis and incorporates criteria relevant for associated CPSs, making MIPOGG a more universally accessible diagnostic adjunct that does not require in-depth knowledge of each CPS.


Asunto(s)
Sistemas de Apoyo a Decisiones Clínicas , Síndromes Neoplásicos Hereditarios , Niño , Humanos , Algoritmos , Síndromes Neoplásicos Hereditarios/diagnóstico , Síndromes Neoplásicos Hereditarios/genética , Estudios Retrospectivos
2.
JAMA Oncol ; 7(12): 1806-1814, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34617981

RESUMEN

IMPORTANCE: Prompt recognition of a child with a cancer predisposition syndrome (CPS) has implications for cancer management, surveillance, genetic counseling, and cascade testing of relatives. Diagnosis of CPS requires practitioner expertise, access to genetic testing, and test result interpretation. This diagnostic process is not accessible in all institutions worldwide, leading to missed CPS diagnoses. Advances in electronic health technology can facilitate CPS risk assessment. OBJECTIVE: To evaluate the diagnostic accuracy of a CPS prediction tool (McGill Interactive Pediatric OncoGenetic Guidelines [MIPOGG]) in identifying children with cancer who have a low or high likelihood of having a CPS. DESIGN, SETTING, AND PARTICIPANTS: In this international, multicenter diagnostic accuracy study, 1071 pediatric (<19 years of age) oncology patients who had a confirmed CPS (12 oncology referral centers) or who underwent germline DNA sequencing through precision medicine programs (6 centers) from January 1, 2000, to July 31, 2020, were studied. EXPOSURES: Exposures were MIPOGG application in patients with cancer and a confirmed CPS (diagnosed through routine clinical care; n = 413) in phase 1 and MIPOGG application in patients with cancer who underwent germline DNA sequencing (n = 658) in phase 2. Study phases did not overlap. Data analysts were blinded to genetic test results. MAIN OUTCOMES AND MEASURES: The performance of MIPOGG in CPS recognition was compared with that of routine clinical care, including identifying a CPS earlier than practitioners. The tool's test characteristics were calculated using next-generation germline DNA sequencing as the comparator. RESULTS: In phase 1, a total of 413 patients with cancer (median age, 3.0 years; range, 0-18 years) and a confirmed CPS were identified. MIPOGG correctly recognized 410 of 412 patients (99.5%) as requiring referral for CPS evaluation at the time of primary cancer diagnosis. Nine patients diagnosed with a CPS by a practitioner after their second malignant tumor were detected by MIPOGG using information available at the time of the first cancer. In phase 2, of 658 children with cancer (median age, 6.6 years; range, 0-18.8 years) who underwent comprehensive germline DNA sequencing, 636 had sufficient information for MIPOGG application. When compared with germline DNA sequencing for CPS detection, the MIPOGG test characteristics for pediatric-onset CPSs were as follows: sensitivity, 90.7%; specificity, 60.5%; positive predictive value, 17.6%; and negative predictive value, 98.6%. Tumor DNA sequencing data confirmed the MIPOGG recommendation for CPS evaluation in 20 of 22 patients with established cancer-CPS associations. CONCLUSIONS AND RELEVANCE: In this diagnostic study, MIPOGG exhibited a favorable accuracy profile for CPS screening and reduced time to CPS recognition. These findings suggest that MIPOGG implementation could standardize and rationalize recommendations for CPS evaluation in children with cancer.


Asunto(s)
Pruebas Genéticas , Neoplasias , Niño , Preescolar , Detección Precoz del Cáncer , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Síndrome
3.
Clin Transl Gastroenterol ; 12(8): e00397, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34397043

RESUMEN

INTRODUCTION: Uninformative germline genetic testing presents a challenge to clinical management for patients suspected to have Lynch syndrome, a cancer predisposition syndrome caused by germline variants in the mismatch repair (MMR) genes or EPCAM. METHODS: Among a consecutive series of MMR-deficient Lynch syndrome spectrum cancers identified through immunohistochemistry-based tumor screening, we investigated the clinical utility of tumor sequencing for the molecular diagnosis and management of suspected Lynch syndrome families. MLH1-deficient colorectal cancers were prescreened for BRAF V600E before referral for genetic counseling. Microsatellite instability, MLH1 promoter hypermethylation, and somatic and germline genetic variants in the MMR genes were assessed according to an established clinical protocol. RESULTS: Eighty-four individuals with primarily colorectal (62%) and endometrial (31%) cancers received tumor-normal sequencing as part of routine clinical genetic assessment. Overall, 27% received a molecular diagnosis of Lynch syndrome. Most of the MLH1-deficient tumors were more likely of sporadic origin, mediated by MLH1 promoter hypermethylation in 54% and double somatic genetic alterations in MLH1 (17%). MSH2-deficient, MSH6-deficient, and/or PMS2-deficient tumors could be attributed to pathogenic germline variants in 37% and double somatic events in 28%. Notably, tumor sequencing could explain 49% of cases without causal germline variants, somatic MLH1 promoter hypermethylation, or somatic variants in BRAF. DISCUSSION: Our findings support the integration of tumor sequencing into current Lynch syndrome screening programs to improve clinical management for individuals whose germline testing is uninformative.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Reparación de la Incompatibilidad de ADN , Mutación de Línea Germinal , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Metilación de ADN , Molécula de Adhesión Celular Epitelial/genética , Femenino , Humanos , Masculino , Inestabilidad de Microsatélites , Persona de Mediana Edad , Homólogo 1 de la Proteína MutL/genética
4.
BMC Genomics ; 13: 719, 2012 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-23260012

RESUMEN

BACKGROUND: It has recently emerged that common epithelial cancers such as breast cancers have fusion genes like those in leukaemias. In a representative breast cancer cell line, ZR-75-30, we searched for fusion genes, by analysing genome rearrangements. RESULTS: We first analysed rearrangements of the ZR-75-30 genome, to around 10kb resolution, by molecular cytogenetic approaches, combining array painting and array CGH. We then compared this map with genomic junctions determined by paired-end sequencing. Most of the breakpoints found by array painting and array CGH were identified in the paired end sequencing-55% of the unamplified breakpoints and 97% of the amplified breakpoints (as these are represented by more sequence reads). From this analysis we identified 9 expressed fusion genes: APPBP2-PHF20L1, BCAS3-HOXB9, COL14A1-SKAP1, TAOK1-PCGF2, TIAM1-NRIP1, TIMM23-ARHGAP32, TRPS1-LASP1, USP32-CCDC49 and ZMYM4-OPRD1. We also determined the genomic junctions of a further three expressed fusion genes that had been described by others, BCAS3-ERBB2, DDX5-DEPDC6/DEPTOR and PLEC1-ENPP2. Of this total of 12 expressed fusion genes, 9 were in the coamplification. Due to the sensitivity of the technologies used, we estimate these 12 fusion genes to be around two-thirds of the true total. Many of the fusions seem likely to be driver mutations. For example, PHF20L1, BCAS3, TAOK1, PCGF2, and TRPS1 are fused in other breast cancers. HOXB9 and PHF20L1 are members of gene families that are fused in other neoplasms. Several of the other genes are relevant to cancer-in addition to ERBB2, SKAP1 is an adaptor for Src, DEPTOR regulates the mTOR pathway and NRIP1 is an estrogen-receptor coregulator. CONCLUSIONS: This is the first structural analysis of a breast cancer genome that combines classical molecular cytogenetic approaches with sequencing. Paired-end sequencing was able to detect almost all breakpoints, where there was adequate read depth. It supports the view that gene breakage and gene fusion are important classes of mutation in breast cancer, with a typical breast cancer expressing many fusion genes.


Asunto(s)
Neoplasias de la Mama/genética , Genoma Humano/genética , Proteínas de Fusión Oncogénica/genética , Secuencia de Bases , Línea Celular Tumoral , Mapeo Cromosómico , Clonación Molecular , Hibridación Genómica Comparativa/métodos , Femenino , Humanos , Datos de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de ADN
5.
BMC Cancer ; 8: 17, 2008 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-18208621

RESUMEN

BACKGROUND: Subclassification of ovarian carcinomas can be used to guide treatment and determine prognosis. Germline and somatic mutations, loss of heterozygosity (LOH), and epigenetic events such as promoter hypermethylation can lead to decreased expression of BRCA1/2 in ovarian cancers. The mechanism of BRCA1/2 loss is a potential method of subclassifying high grade serous carcinomas. METHODS: A consecutive series of 49 ovarian cancers was assessed for mutations status of BRCA1 and BRCA2, LOH at the BRCA1 and BRCA2 loci, methylation of the BRCA1 promoter, BRCA1, BRCA2, PTEN, and PIK3CA transcript levels, PIK3CA gene copy number, and BRCA1, p21, p53, and WT-1 immunohistochemistry. RESULTS: Eighteen (37%) of the ovarian carcinomas had germline or somatic BRCA1 mutations, or epigenetic loss of BRCA1. All of these tumours were high-grade serous or undifferentiated type. None of the endometrioid (n = 5), clear cell (n = 4), or low grade serous (n = 2) carcinomas showed loss of BRCA1, whereas 47% of the 38 high-grade serous or undifferentiated carcinomas had loss of BRCA1. It was possible to distinguish high grade serous carcinomas with BRCA1 mutations from those with epigenetic BRCA1 loss: tumours with BRCA1 mutations typically had decreased PTEN mRNA levels while those with epigenetic loss of BRCA1 had copy number gain of PIK3CA. Overexpression of p53 with loss of p21 expression occurred significantly more frequently in high grade serous carcinomas with epigenetic loss of BRCA1, compared to high grade serous tumors without loss of BRCA1. CONCLUSION: High grade serous carcinomas can be subclassified into three groups: BRCA1 loss (genetic), BRCA1 loss (epigenetic), and no BRCA1 loss. Tumors in these groups show distinct molecular alterations involving the PI3K/AKT and p53 pathways.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Epigénesis Genética/genética , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Secuencia de Bases , Femenino , Genoma Humano/genética , Humanos , Inmunohistoquímica , Proteínas Nucleares/genética , Fosfohidrolasa PTEN/genética , ARN Mensajero/genética , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/metabolismo
6.
Genes Chromosomes Cancer ; 46(5): 427-39, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17285574

RESUMEN

Epithelial cancers frequently have multiple amplifications, and particular amplicons tend to occur together. These co-amplifications have been suggested to result from amplification of pre-existing junctions between two chromosomes, that is, translocation junctions. We investigated this hypothesis for two amplifications frequent in breast cancer, at 8p12 and 11q13, which had been reported to be associated in Southern blot studies. We confirmed that both genomic amplification and expression of genes was correlated between the frequently-amplified regions of 8p and 11q, in array CGH and microarray expression data, supporting the importance of co-amplification. We examined by FISH the physical structure of co-amplifications that we had identified by array CGH, in five breast cancer cell lines (HCC1500, MDA-MB-134, MDA-MB-175, SUM44, and ZR-75-1), four breast tumors, and a pancreatic cancer cell line (SUIT2). We found a variety of arrangements: amplification of translocation junctions; entirely independent amplification of the two regions on separate chromosomes; and separate amplification of 8p and 11q sequences in distinct sites on the same rearranged chromosome. In this last arrangement, interphase nuclei often showed intermingling of FISH signals from 8p12 and 11q13, giving a false impression that the sequences were interdigitated. We conclude that co-amplification of the main 8p and 11q amplicons in breast tumors is not usually the result of a preceding translocation event but most likely reflects selection of clones that have amplified both loci. This article contains supplementary material available at http://www.interscience.wiley.com/jpages/1045-2257/suppmat.


Asunto(s)
Neoplasias de la Mama/genética , Mapeo Cromosómico , Cromosomas Humanos Par 11 , Cromosomas Humanos Par 8 , Amplificación de Genes , Línea Celular Tumoral , Femenino , Genoma Humano , Humanos , Hibridación Fluorescente in Situ , Proteínas de Neoplasias/genética , Análisis de Secuencia por Matrices de Oligonucleótidos
7.
EMBO J ; 26(3): 816-24, 2007 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-17255945

RESUMEN

Although the Archaea exhibit an intriguing combination of bacterial- and eukaryotic-like features, it is not known how these prokaryotic cells segregate their chromosomes before the process of cell division. In the course of our analysis of the third replication origin in the archaeon Sulfolobus solfataricus, we identify and characterise sister chromatid junctions in this prokaryote. This pairing appears to be mediated by hemicatenane-like structures, and we provide evidence that these junctions persist in both replicating and postreplicative cells. These data, in conjunction with fluorescent in situ hybridisation analyses, suggest that Sulfolobus chromosomes have a significant period of postreplicative sister chromatid synapsis, a situation that is more reminiscent of eukaryotic than bacterial chromosome segregation mechanisms.


Asunto(s)
Cromátides/genética , Complejo de Reconocimiento del Origen/genética , Intercambio de Cromátides Hermanas/fisiología , Sulfolobus solfataricus/genética , Cartilla de ADN , Electroforesis en Gel Bidimensional , Citometría de Flujo , Hibridación Fluorescente in Situ , Complejo de Reconocimiento del Origen/metabolismo , Intercambio de Cromátides Hermanas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...