RESUMEN
PCR amplification plays an integral role in the measurement of mixed microbial communities via high-throughput DNA sequencing of the 16S ribosomal RNA (rRNA) gene. Yet PCR is also known to introduce multiple forms of bias in 16S rRNA studies. Here we present a paired modeling and experimental approach to characterize and mitigate PCR NPM-bias (PCR bias from non-primer-mismatch sources) in microbiota surveys. We use experimental data from mock bacterial communities to validate our approach and human gut microbiota samples to characterize PCR NPM-bias under real-world conditions. Our results suggest that PCR NPM-bias can skew estimates of microbial relative abundances by a factor of 4 or more, but that this bias can be mitigated using log-ratio linear models.
Asunto(s)
Bacterias/genética , Bases de Datos Genéticas/normas , Microbioma Gastrointestinal/genética , Reacción en Cadena de la Polimerasa/normas , Sesgo , ADN Bacteriano/genética , HumanosRESUMEN
Culture and screening of gut bacteria enable testing of microbial function and therapeutic potential. However, the diversity of human gut microbial communities (microbiota) impedes comprehensive experimental studies of individual bacterial taxa. Here, we combine advances in droplet microfluidics and high-throughput DNA sequencing to develop a platform for separating and assaying growth of microbiota members in picoliter droplets (MicDrop). MicDrop enabled us to cultivate 2.8 times more bacterial taxa than typical batch culture methods. We then used MicDrop to test whether individuals possess similar abundances of carbohydrate-degrading gut bacteria, using an approach which had previously not been possible due to throughput limitations of traditional bacterial culture techniques. Single MicDrop experiments allowed us to characterize carbohydrate utilization among dozens of gut bacterial taxa from distinct human stool samples. Our aggregate data across nine healthy stool donors revealed that all of the individuals harbored gut bacterial species capable of degrading common dietary polysaccharides. However, the levels of richness and abundance of polysaccharide-degrading species relative to monosaccharide-consuming taxa differed by up to 2.6-fold and 24.7-fold, respectively. Additionally, our unique dataset suggested that gut bacterial taxa may be broadly categorized by whether they can grow on single or multiple polysaccharides, and we found that this lifestyle trait is correlated with how broadly bacterial taxa can be found across individuals. This demonstration shows that it is feasible to measure the function of hundreds of bacterial taxa across multiple fecal samples from different people, which should in turn enable future efforts to design microbiota-directed therapies and yield new insights into microbiota ecology and evolution.IMPORTANCE Bacterial culture and assay are components of basic microbiological research, drug development, and diagnostic screening. However, community diversity can make it challenging to comprehensively perform experiments involving individual microbiota members. Here, we present a new microfluidic culture platform that makes it feasible to measure the growth and function of microbiota constituents in a single set of experiments. As a proof of concept, we demonstrate how the platform can be used to measure how hundreds of gut bacterial taxa drawn from different people metabolize dietary carbohydrates. Going forward, we expect this microfluidic technique to be adaptable to a range of other microbial assay needs.
RESUMEN
AbstractFollowing publication of the original article [1], the authors noticed an error in the presentation of equations in the PDF version.
RESUMEN
BACKGROUND: Artificial gut models provide unique opportunities to study human-associated microbiota. Outstanding questions for these models' fundamental biology include the timescales on which microbiota vary and the factors that drive such change. Answering these questions though requires overcoming analytical obstacles like estimating the effects of technical variation on observed microbiota dynamics, as well as the lack of appropriate benchmark datasets. RESULTS: To address these obstacles, we created a modeling framework based on multinomial logistic-normal dynamic linear models (MALLARDs) and performed dense longitudinal sampling of four replicate artificial human guts over the course of 1 month. The resulting analyses revealed how the ratio of biological variation to technical variation from sample processing depends on sampling frequency. In particular, we find that at hourly sampling frequencies, 76% of observed variation could be ascribed to technical sources, which could also skew the observed covariation between taxa. We also found that the artificial guts demonstrated replicable trajectories even after a recovery from a transient feed disruption. Additionally, we observed irregular sub-daily oscillatory dynamics associated with the bacterial family Enterobacteriaceae within all four replicate vessels. CONCLUSIONS: Our analyses suggest that, beyond variation due to sequence counting, technical variation from sample processing can obscure temporal variation from biological sources in artificial gut studies. Our analyses also supported hypotheses that human gut microbiota fluctuates on sub-daily timescales in the absence of a host and that microbiota can follow replicable trajectories in the presence of environmental driving forces. Finally, multiple aspects of our approach are generalizable and could ultimately be used to facilitate the design and analysis of longitudinal microbiota studies in vivo.
Asunto(s)
Órganos Artificiales/microbiología , Bacteroides/crecimiento & desarrollo , Enterobacteriaceae/crecimiento & desarrollo , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Modelos Anatómicos , Humanos , Modelos LinealesRESUMEN
Copy number variation plays a clear role in the etiology of many psychiatric disorders, particularly schizophrenia. We performed array-CGH to look for copy number variants between five pairs of monozygotic twins discordant for bipolar disorder or schizophrenia. Our study found no differences in copy number variants between the sets of twins. Although alluring, realistic accounting for heterogeneity and chimerism highlights the technological limitations in studying monozygotic twins discordant for psychiatric disorders.