RESUMEN
The lacunocanalicular network (LCN) is an intricate arrangement of cavities (lacunae) and channels (canaliculi), which permeates the mineralized bone matrix. In its porosity, the LCN accommodates the cell network of osteocytes. These two nested networks are attributed a variety of essential functions including transport, signaling, and mechanosensitivity due to load-induced fluid flow through the LCN. For a more quantitative assessment of the networks' function, the three-dimensional architecture has to be known. For this reason, we aimed (i) to quantitatively characterize spatial heterogeneities of the LCN in whole mouse tibial cross-sections of BALB/c mice and (ii) to analyze differences in LCN architecture by comparison with another commonly used inbred mouse strain, the C57BL/6 mouse. Both tibiae of five BALB/c mice (female, 26-week-old) were stained using rhodamine 6G and whole tibiae cross-sections were imaged using confocal laser scanning microscopy. Using image analysis, the LCN was quantified in terms of density and connectivity and lacunar parameters, such as lacunar degree, volume, and shape. In the same tibial cross-sections, the calcium content was measured using quantitative backscattered electron imaging (qBEI). A structural analysis of the LCN properties showed that spatially denser parts of the LCN are mainly due to a higher density of branching points in the network. While a high intra-individual variability of network density was detected within the cortex, the inter-individual variability between different mice was low. In comparison to C57BL/6J mice, BALB/c mice showed a distinct lower canalicular density. This reduced network was already detectable on a local network level with fewer canaliculi emanating from lacunae. Spatial correlation with qBEI images demonstrated that bone modeling resulted in disruptions in the network architecture. The spatial heterogeneity and differences in density of the LCN likely affects the fluid flow within the network and therefore bone's mechanoresponse to loading.
RESUMEN
Osteocytes are mechanosensitive, bone-embedded cells which are connected via dendrites in a lacuno-canalicular network and regulate bone resorption and formation balance. Alterations in osteocyte lacunar volume, shape and density have been identified in conditions of aging, osteoporosis and osteolytic bone metastasis, indicating patterns of impaired bone remodeling, osteolysis and disease progression. Osteolytic bone disease is a hallmark of the hematologic malignancy multiple myeloma (MM), in which monoclonal plasma cells in the bone marrow disrupt the bone homeostasis and induce excessive resorption at local and distant sites. Qualitative and quantitative changes in the 3D osteocyte lacunar morphometry have not yet been evaluated in MM, nor in the precursor conditions monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM). In this study, we characterized the osteocyte lacunar morphology in trabecular bone of the iliac crest at the ultrastructural level using high resolution microCT in human bone biopsy samples of three MGUS, two SMM and six newly diagnosed MM. In MGUS, SMM and MM we found a trend for lower lacunar density and a shift towards larger lacunae with disease progression (higher 50 % cutoff of the lacunar volume cumulative distribution) in the small osteocyte lacunae 20-900 µm3 range compared to control samples. In the larger lacunae 900-3000 µm3 range, we detected significantly higher lacunar density and microporosity in the MM group compared to the MGUS/SMM group. Regarding the shape distribution, the MGUS/SMM group showed a trend for flatter, more elongated and anisotropic osteocyte lacunae compared to the control group. Altogether, our findings suggest that osteocytes in human MM bone disease undergo changes in their lacunae density, volume and shape, which could be an indicator for osteolysis and disease progression. Future studies are needed to understand whether alterations of the lacunae architecture affect the mechanoresponsiveness of osteocytes, and ultimately bone adaptation and fracture resistance in MM and its precursors conditions.
Asunto(s)
Mieloma Múltiple , Osteocitos , Microtomografía por Rayos X , Humanos , Osteocitos/patología , Mieloma Múltiple/patología , Mieloma Múltiple/diagnóstico por imagen , Anciano , Masculino , Femenino , Biopsia , Persona de Mediana Edad , Huesos/patología , Huesos/diagnóstico por imagen , Imagenología Tridimensional , Anciano de 80 o más Años , Paraproteinemias/patología , Paraproteinemias/diagnóstico por imagen , Gammopatía Monoclonal de Relevancia Indeterminada/patología , Gammopatía Monoclonal de Relevancia Indeterminada/diagnóstico por imagenRESUMEN
PURPOSE: To measure the dislocation forces in relation to haptic material, flange size and needle used. SETTING: Hanusch Hospital, Vienna, Austria. DESIGN: Laboratory Investigation. METHODS, MAIN OUTCOME MEASURES: 30 G (gauge) thin wall and 27 G standard needles were used for a 2 mm tangential scleral tunnel in combination with different PVDF (polyvinylidene fluoride) and PMMA (polymethylmethacrylate haptics). Flanges were created by heating 1 mm of the haptic end, non-forceps assisted in PVDF and forceps assisted in PMMA haptics. The dislocation force was measured in non-preserved cadaver sclera using a tensiometer device. RESULTS: PVDF flanges achieved were of a mushroom-like shape and PMMA flanges were of a conic shape. For 30 G needle tunnels the dislocation forces for PVDF and PMMA haptic flanges were 1.58 ± 0.68 N (n = 10) and 0.70 ± 0.14 N (n = 9) (p = 0.003) respectively. For 27 G needle tunnels the dislocation forces for PVDF and PMMA haptic flanges were 0.31 ± 0.35 N (n = 3) and 0.0 N (n = 4), respectively. The flange size correlated with the occurring dislocation force in experiments with 30 G needle tunnels (r = 0.92), when flanges were bigger than 384 micrometres. CONCLUSIONS: The highest dislocation forces were found for PVDF haptic flanges and their characteristic mushroom-like shape for 30 G thin wall needle scleral tunnels. Forceps assisted flange creation in PMMA haptics did not compensate the disadvantage of PMMA haptics with their characteristic conic shape flange.
Asunto(s)
Polímeros de Fluorocarbono , Tecnología Háptica , Lentes Intraoculares , Polivinilos , Humanos , Polimetil Metacrilato , Esclerótica/cirugíaRESUMEN
PURPOSE: To investigate the flange properties of different iris hooks. SETTING: Vienna Institute for Research in Ocular Surgery (VIROS), Hanusch Hospital, Vienna, Austria. DESIGN: Laboratory study. METHODS: The flanging properties of 4 different iris hooks made from polypropylene (PP), elastic polymer (EP), and nylon were investigated with different heating distances and both with and without forceps gripping. The maximum diameter of the flanges was measured, and the shape of the flanges was evaluated. RESULTS: Although both nylon and EP iris hooks had too small flange diameters for intrascleral fixation, PP iris hooks had a sufficient flange diameter (>330 µm) and mushroom-like shape. Furthermore, in PP hooks, heating distance was directly proportional to flange diameter. CONCLUSIONS: The findings of this study suggest that only PP iris hooks are suitable for flanged intrascleral fixation, which is off-label, to secure adequate fixation.
Asunto(s)
Implantación de Lentes Intraoculares , Lentes Intraoculares , Humanos , Implantación de Lentes Intraoculares/métodos , Nylons , Técnicas de Sutura , Iris/cirugía , Polímeros , Esclerótica/cirugíaRESUMEN
Introduction: Chronic pain is defined as pain lasting longer than 3 months. This often causes persistent emotional distress and functional disability that is refractory to conventional treatments. Emerging evidence suggests that oral Ketamine therapy may have a specific role in managing treatment-resistant chronic pain. This study aimed to assess the effectiveness of oral ketamine within a tertiary chronic pain management clinic. Methods: This study was a clinic-based retrospective descriptive study of 79 patients with a broad range of chronic pain diagnoses and treated with oral ketamine over a period up to 12 years. Changes in pain, mood and quality of life (QoL) were assessed using a numerical pain severity score, the Brief Pain Inventory (BPI), the Public Health Questionnaire (PHQ-9) and American Chronic Pain Association Quality of Life (QoL) scale. Results: 73 patients were accessible for follow-up (mean daily dose and treatment duration were 193.84â mg and 22.6 months respectively). Pain scores decreased (p < 0.0001) on both numerical scores (41.6% decrease) and BPI scoring (mean decrease 2.61). Mood improved (p < 0.0001) across both PHQ-9 and BPI measurements. Patients also reported less difficulty with daily activities and improved QoL. The most common adverse reaction was drowsiness (21.9%), with 30.1% reporting no adverse reactions from Ketamine. Discussion: This work adds to the growing body of evidence that under the supervision of a pain specialist, oral ketamine therapy may be a safe, tolerable and effective treatment for chronic pain conditions which have not responded to other management options. Further research is required to produce a more accurate understanding of its chronic use. Key message: This real-world study shows that patients being treated with oral ketamine for chronic pain report decreased severity of pain, improved mood and increased quality of life across all conditions.
RESUMEN
Osteogenesis imperfecta (OI) and hypophosphatasia (HPP) are rare skeletal disorders caused by mutations in the genes encoding collagen type I (COL1A, COL1A2) and tissue-non-specific isoenzyme of alkaline phosphatase (ALPL), respectively. Both conditions result in skeletal deformities and bone fragility although bone tissue abnormalities differ considerably. Children with OI have low bone mass and hypermineralized matrix, whereas HPP children develop rickets and osteomalacia. We report a family, father and three children, affected with growth retardation, low bone mass and recurrent fractures. None of them had rickets, blue sclera or dentinogenesis imperfecta. ALP serum levels were low and genetics revealed in the four probands heterozygous pathogenic mutations in COL1A2 c.838G > A (p.Gly280Ser) and in ALPL c.1333T > C (p.Ser445Pro). After multidisciplinary meeting, a diagnostic transiliac bone biopsy was indicated for each sibling for therapeutic decision. Bone histology and histomorphometry, as compared to reference values of children with OI type I as well as, to a control pediatric patient harboring the same COL1A2 mutation, revealed similarly decreased trabecular bone volume, increased osteocyte lacunae, but additionally severe osteomalacia. Quantitative backscattered electron imaging demonstrated that bone matrix mineralization was not as decreased as expected for osteomalacia. In summary, we observed within each biopsy samples classical features of OI and classical features of HPP. The apparent nearly normal bone mineralization density distribution results presumably from divergent effects of OI and HPP on matrix mineralization. A combination therapy was initiated with ALP enzyme-replacement and one month later with bisphosphonates. The ongoing treatment led to improved skeletal growth, increased BMD and markedly reduced fracture incidence.
Asunto(s)
Calcinosis , Fracturas Múltiples , Hipofosfatasia , Osteogénesis Imperfecta , Osteomalacia , Raquitismo , Niño , Humanos , Osteogénesis Imperfecta/tratamiento farmacológico , Osteogénesis Imperfecta/genética , Hipofosfatasia/tratamiento farmacológico , Hipofosfatasia/genética , Osteomalacia/genética , Osteomalacia/patología , Mutación , Fosfatasa Alcalina/genéticaRESUMEN
Bi-allelic variants in ASCC1 cause the ultrarare bone fragility disorder "spinal muscular atrophy with congenital bone fractures-2" (SMABF2). However, the mechanism by which ASCC1 dysfunction leads to this musculoskeletal condition and the nature of the associated bone defect are poorly understood. By exome sequencing, we identified a novel homozygous deletion in ASCC1 in a female infant. She was born with severe muscular hypotonia, inability to breathe and swallow, and virtual absence of spontaneous movements; showed progressive brain atrophy, gracile long bones, very slender ribs, and a femur fracture; and died from respiratory failure aged 3 months. A transiliac bone sample taken postmortem revealed a distinct microstructural bone phenotype with low trabecular bone volume, low bone remodeling, disordered collagen organization, and an abnormally high bone marrow adiposity. Proteomics, RNA sequencing, and qPCR in patient-derived skin fibroblasts confirmed that ASCC1 was hardly expressed on protein and RNA levels compared with healthy controls. Furthermore, we demonstrate that mutated ASCC1 is associated with a downregulation of RUNX2, the master regulator of osteoblastogenesis, and SERPINF1, which is involved in osteoblast and adipocyte differentiation. It also exerts an inhibitory effect on TGF-ß/SMAD signaling, which is important for bone development. Additionally, knockdown of ASCC1 in human mesenchymal stromal cells (hMSCs) suppressed their differentiation capacity into osteoblasts while increasing their differentiation into adipocytes. This resulted in reduced mineralization and elevated formation of lipid droplets. These findings shed light onto the pathophysiologic mechanisms underlying SMABF2 and assign a new biological role to ASCC1 acting as an important pro-osteoblastogenic and anti-adipogenic regulator.
Asunto(s)
Adipogénesis , Proteínas , Lactante , Humanos , Femenino , Homocigoto , Eliminación de Secuencia , Diferenciación Celular , Proteínas/genética , Proteínas Portadoras/genéticaRESUMEN
Vitamin C (VitC) is essential for bone health, and low VitC serum levels increase the risk for skeletal fractures. If and how VitC affects bone mineralization is unclear. Using micro-computed tomography (µCT), histologic staining, as well as quantitative backscattered electron imaging (qBEI), we assessed the effects of VitC on femoral structure and microarchitecture, bone formation, and bone mineralization density distribution (BMDD) in the VitC incompetent Gulo-/- mouse model and wild-type mice. In particular, VitC-supplemented, 20-week-old mice were compared with age-matched counterparts where dietary VitC intake was excluded from week 15. VitC depletion in Gulo-/- mice severely reduced cortical thickness of the diaphyseal shaft and bone volume around the growth plate (eg, bone volume of the primary spongiosa -43%, p < 0.001). Loss of VitC also diminished the amount of newly formed bone tissue as visualized by histology and calcein labeling of the active mineralization front. BMDD analysis revealed a shift to higher calcium concentrations upon VitC supplementation, including higher average (~10% increase in female VitC deficient mice, p < 0.001) and peak calcium concentrations in the epiphyseal and metaphyseal spongiosa. These findings suggest higher bone tissue age. Importantly, loss of VitC had significantly more pronounced effects in female mice, indicating a higher sensitivity of their skeleton to VitC deficiency. Our results reveal that VitC plays a key role in bone formation rate, which directly affects mineralization. We propose that low VitC levels may contribute to the higher prevalence of bone-degenerative diseases in females and suggest leveraging this vitamin against these conditions. © 2023 American Society for Bone and Mineral Research (ASBMR).
Asunto(s)
Deficiencia de Ácido Ascórbico , Mustelidae , Masculino , Ratones , Animales , Femenino , Calcio/farmacología , Microtomografía por Rayos X , Huesos/diagnóstico por imagen , Densidad Ósea , Calcificación Fisiológica , Ácido Ascórbico/farmacologíaRESUMEN
PURPOSE: To assess the diameter of different 30-gauge thin-wall needles and 3-piece intraocular lens (IOL) haptics readily used for the flanged-haptic intrascleral fixation technique. SETTING: Hanusch Hospital, Vienna, Austria. DESIGN: Laboratory investigation. METHODS: 5 30-gauge thin-wall needles and 5 3-piece IOLs were assessed. An upright light microscopy was used for measurements. The inner and outer diameters of the needles and the end thickness of the haptics were analyzed and compared for haptic fitting into the needle. RESULTS: Among the needles, the inner diameter of the T-lab needle was significantly wider compared with all the others (mean 209.3 ± 8.0 µm, P < .001), followed by TSK (194.8 ± 5.0 µm), MST (194.7 ± 5.8 µm), Sterimedix (187.5 ± 9.0 µm) and significantly narrower Meso-relle (mean 178.7 ± 7.0 µm, P < .05). The outer diameter of the T-lab needle was significantly larger of all (mean 316.0 ± 2.0 µm, P < .001). Concerning the IOLs, the AvanseePreset Kowa's haptic was significantly thinner (mean 127.2 ± 0.7 µm) than all the others, such as the TecnisZA900 Johnson & Johnson (143.5 ± 3.1 µm), the CTLucia202 Zeiss (143.8 ± 1.3 µm), and the AcrysofMA60AC Alcon (143.9 ± 1.4 µm). The only haptic that was thicker than all the others assessed was that of SensarAR40 Johnson & Johnson (170.7 ± 1.7 µm, P < .001). CONCLUSIONS: Most of the analyzed haptics would fit into most of the measured needles, with the exception of the Sensar AR40 in combination with the Meso-relle or Sterimedix needles. The combination of a larger needle lumen and a thinner haptic could result in more ease of insertion during surgery. If the dimensions of the needle and IOL haptics used are unknown, we recommend trying insertion before beginning surgery.
Asunto(s)
Implantación de Lentes Intraoculares , Lentes Intraoculares , Humanos , Implantación de Lentes Intraoculares/métodos , Agujas , Tecnología Háptica , Esclerótica/cirugía , Técnicas de SuturaRESUMEN
A demanding task of the musculoskeletal system is the attachment of tendon to bone at entheses. This region often presents a thin layer of fibrocartilage (FC), mineralized close to the bone and unmineralized close to the tendon. Mineralized FC deserves increased attention, owing to its crucial anchoring task and involvement in enthesis pathologies. Here, we analyzed mineralized FC and subchondral bone at the Achilles tendon-bone insertion of rats. This location features enthesis FC anchoring tendon to bone and sustaining tensile loads, and periosteal FC facilitating bone-tendon sliding with accompanying compressive and shear forces. Using a correlative multimodal investigation, we evaluated potential specificities in mineral content, fiber organization and mechanical properties of enthesis and periosteal FC. Both tissues had a lower degree of mineralization than subchondral bone, yet used the available mineral very efficiently: for the same local mineral content, they had higher stiffness and hardness than bone. We found that enthesis FC was characterized by highly aligned mineralized collagen fibers even far away from the attachment region, whereas periosteal FC had a rich variety of fiber arrangements. Except for an initial steep spatial gradient between unmineralized and mineralized FC, local mechanical properties were surprisingly uniform inside enthesis FC while a modulation in stiffness, independent from mineral content, was observed in periosteal FC. We interpreted these different structure-property relationships as a demonstration of the high versatility of FC, providing high strength at the insertion (to resist tensile loading) and a gradual compliance at the periosteal surface (to resist contact stresses). STATEMENT OF SIGNIFICANCE: Mineralized fibrocartilage (FC) at entheses facilitates the integration of tendon in bone, two strongly dissimilar tissues. We focus on the structure-function relationships of two types of mineralized FC, enthesis and periosteal, which have clearly distinct mechanical demands. By investigating them with multiple high-resolution methods in a correlative manner, we demonstrate differences in fiber architecture and mechanical properties between the two tissues, indicative of their mechanical roles. Our results are relevant both from a medical viewpoint, targeting a clinically relevant location, as well as from a material science perspective, identifying FC as high-performance versatile composite.
Asunto(s)
Tendón Calcáneo , Animales , Ratas , Huesos , Fibrocartílago , MineralesRESUMEN
Autoimmune polyendocrine syndrome type-1 (APS1) is characterized by autoimmune manifestations affecting different organs from early childhood on. Immunological abnormalities, the resulting endocrinopathies, and their treatments may compromise bone health. For the first time in APS1, we analyzed transiliac bone biopsy samples by bone histomorphometry and quantitative backscattered electron imaging in three adult patients (female P1, 38 years; male P2, 47 years; male P3, 25 years). All had biallelic mutations in the autoimmune regulator gene and in addition to endocrinopathies, also significant bone fragility. Histomorphometry showed bone volume in the lower normal range for P1 (BV/TV, - 0.98 SD) and P3 (- 1.34 SD), mainly due to reduced trabecular thickness (TbTh, - 3.63 and - 2.87 SD). In P1, osteoid surface was low (OS/BS, - 0.96 SD); active osteoblasts and double labeling were seen only on cortical bone. P3 showed a largely increased bone turnover rate (BFR/BV, + 4.53 SD) and increased mineralization lag time (Mlt, + 3.40 SD). Increased osteoid surface (OS/BS, + 2.03 and + 4.71 SD for P2 and P3) together with a large proportion of lowly mineralized bone area (Trab CaLow, + 2.22 and + 9.81 SD for P2 and P3) and focal mineralization defects were consistent with abnormal mineralization. In all patients, the density and area of osteocyte lacunae in cortical and trabecular bone were similar to healthy adults. The bone tissue characteristics were variable and included decreased trabecular thickness, increased amount of osteoid, and abnormal mineralization which are likely to contribute to bone fragility in patients with APS1.
Asunto(s)
Densidad Ósea , Poliendocrinopatías Autoinmunes , Adulto , Humanos , Masculino , Preescolar , Femenino , Poliendocrinopatías Autoinmunes/genética , Huesos , Hueso Cortical , Matriz ÓseaRESUMEN
Osteocytes act as bone mechanosensors, regulators of osteoblast/osteoclast activity and mineral homeostasis, however, knowledge about their functional/morphological changes throughout life is limited. We used quantitative backscattered electron imaging (qBEI) to investigate osteocyte lacunae sections (OLS) as a 2D-surrogate characterizing the osteocytes. OLS characteristics, the density of mineralized osteocyte lacunae (i.e., micropetrotic osteocytes, md.OLS-Density in nb/mm2) and the average degree of mineralization (CaMean in weight% calcium) of cortex and spongiosa were analyzed in transiliac biopsy samples from healthy individuals under 30 (n=59) and over 30 years (n=50) (i.e., before and after the age of peak bone mass, respectively). We found several differences in OLS-characteristics: 1). Inter-individually between the age groups: OLS-Density and OLS-Porosity were reduced by about 20% in older individuals in spongiosa and in cortex versus younger probands (both, p < 0.001). 2). Intra-individually between bone compartments: OLS-Density was higher in the cortex, +18.4%, p < 0.001 for younger and +7.6%, p < 0.05 for older individuals. Strikingly, the most frequent OLS nearest-neighbor distance was about 30 µm in both age groups and at both bone sites revealing a preferential organization of osteocytes in clusters. OLS-Density was negatively correlated with CaMean in both spongiosa and cortex (both, p < 0.001). Few mineralized OLS were found in young individuals along with an increase of md.OLS-Density with age. In summary, this transiliac bone sample analysis of 200000 OLS from 109 healthy individuals throughout lifespan reveals several age-related differences in OLS characteristics. Moreover, our study provides reference data from healthy individuals for different ages to be used for diagnosis of bone abnormalities in diseases. STATEMENT OF SIGNIFICANCE: Osteocytes are bone cells embedded in lacunae within the mineralized bone matrix and have a key role in the bone metabolism and the mineral homeostasis. Not easily accessible, we used quantitative backscattered electron imaging to determine precisely number and shape descriptors of the osteocyte lacunae in 2D. We analyzed transiliac biopsy samples from 109 individuals with age distributed from 2 to 95 years. Compact cortical bone showed constantly higher lacunar density than cancellous bone but the lacunar density in both bone tissue decreased with age before the peak bone mass age at 30 years and stabilized or even increased after this age. This extensive study provides osteocyte lacunae reference data from healthy individuals usable for bone pathology diagnosis.
Asunto(s)
Longevidad , Osteocitos , Humanos , Anciano , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano de 80 o más Años , Osteocitos/patología , Huesos , Matriz Ósea , Densidad Ósea , BiopsiaRESUMEN
The spatial distribution of mineralization density is an important signature of bone growth and remodeling processes, and its alterations are often related to disease. The extracellular matrix of some vertebrate mineralized tissues is known to be perfused by a lacunocanalicular network (LCN), a fluid-filled unmineralized structure that harbors osteocytes and their fine processes and transports extracellular fluid and its constituents. The current report provides evidence for structural and compositional heterogeneity at an even smaller, subcanalicular scale. The work reveals an extensive unmineralized three-dimensional (3D) network of nanochannels (~30 nm in diameter) penetrating the mineralized extracellular matrix of human femoral cortical bone and encompassing a greater volume fraction and surface area than these same parameters of the canaliculi comprising the LCN. The present study combines high-resolution focused ion beam-scanning electron microscopy (FIB-SEM) to investigate bone ultrastructure in 3D with quantitative backscattered electron imaging (qBEI) to estimate local bone mineral content. The presence of nanochannels has been found to impact qBEI measurements fundamentally, such that volume percentage (vol%) of nanochannels correlates inversely with weight percentage (wt%) of calcium. This mathematical relationship between nanochannel vol% and calcium wt% suggests that the nanochannels could potentially provide space for ion and small molecule transport throughout the bone matrix. Collectively, these data propose a reinterpretation of qBEI measurements, accounting for nanochannel presence in human bone tissue in addition to collagen and mineral. Further, the results yield insight into bone mineralization processes at the nanometer scale and present the possibility for a potential role of the nanochannel system in permitting ion and small molecule diffusion throughout the extracellular matrix. Such a possible function could thereby lead to the sequestration or occlusion of the ions and small molecules within the extracellular matrix. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Asunto(s)
Calcinosis , Calcio , Humanos , Huesos , Hueso Cortical , Densidad Ósea , Minerales , Calcio de la DietaRESUMEN
Hyperthyroidism causes secondary osteoporosis through favoring bone resorption over bone formation, leading to bone loss with elevated bone fragility. Osteocytes that reside within lacunae inside the mineralized bone matrix orchestrate the process of bone remodeling and can themselves actively resorb bone upon certain stimuli. Nevertheless, the interaction between thyroid hormones and osteocytes and the impact of hyperthyroidism on osteocyte cell function are still unknown. In a preliminary study, we analyzed bones from male C57BL/6 mice with drug-induced hyperthyroidism, which led to mild osteocytic osteolysis with 1.14-fold larger osteocyte lacunae and by 108.33% higher tartrate-resistant acid phosphatase (TRAP) activity in osteocytes of hyperthyroid mice compared to euthyroid mice. To test whether hyperthyroidism-induced bone changes are reversible, we rendered male mice hyperthyroid by adding levothyroxine into their drinking water for 4 weeks, followed by a weaning period of 4 weeks with access to normal drinking water. Hyperthyroid mice displayed cortical and trabecular bone loss due to high bone turnover, which recovered with weaning. Although canalicular number and osteocyte lacunar area were similar in euthyroid, hyperthyroid and weaned mice, the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL)-positive osteocytes was 100% lower in the weaning group compared to euthyroid mice and the osteocytic TRAP activity was eightfold higher in hyperthyroid animals. The latter, along with a 3.75% lower average mineralization around the osteocyte lacunae in trabecular bone, suggests osteocytic osteolysis activity that, however, did not result in significantly enlarged osteocyte lacunae. In conclusion, we show a recovery of bone microarchitecture and turnover after reversal of hyperthyroidism to a euthyroid state. In contrast, osteocytic osteolysis was initiated in hyperthyroidism, but its effects were not reversed after 4 weeks of weaning. Due to the vast number of osteocytes in bone, we speculate that even minor individual cell functions might contribute to altered bone quality and mineral homeostasis in the setting of hyperthyroidism-induced bone disease. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Asunto(s)
Agua Potable , Hipertiroidismo , Osteólisis , Ratones , Masculino , Animales , Osteocitos , Fosfatasa Ácida Tartratorresistente , Ratones Endogámicos C57BL , Minerales , Hipertiroidismo/complicacionesRESUMEN
OBJECTIVES: Patients with type-2 diabetes mellitus (T2DM) have increased risk for bone fractures which points towards impaired bone quality. METHODS: We measured bone mineralization density distribution (BMDD) and osteocyte lacunae section (OLS) characteristics based on quantitative backscattered electron images of transiliac biopsy samples from n=26 premenopausal women with T2DM. Outcomes were compared to those from reference cohorts as well as between T2DM subgroups defined by clinical characteristics. RESULTS: Comparison to references did not reveal any differences in BMDD (all p>0.05) but a lowered OLS-density in cancellous bone in T2DM (-14.9%, p<0.001). Neither BMDD nor OLS-characteristics differed in T2DM subgroups defined by HbA1c (<7% versus >7%). The average degree of bone mineralization (CaMean) was higher (0.44 wt%Ca in T2DM, 0.30 wt%Ca in reference) and consistently the calcium concentration between the tetracycline double labels (CaYoung) was higher (0.76 wt%Ca, all p<0.001) in cancellous versus cortical bone. CONCLUSIONS: Our findings suggest that bone matrix mineralization was neither affected by the presence nor by the glycemic control of T2DM in our study cohort. The intra-individual differences between cancellous and cortical bone mineralization gave evidence for differences in the time course of the early mineralization process in these compartments in general.
Asunto(s)
Diabetes Mellitus Tipo 2 , Densidad Ósea , Huesos , Calcificación Fisiológica , Femenino , Humanos , PremenopausiaRESUMEN
A technique for achieving an optimal flange size with 5-0 polypropylene and 6-0 polypropylene used for flanged intrascleral intraocular lens fixation is described. Flange size in polypropylene sutures is dependent on heating length and independent of forceps grip during heating. It was identified that heating of 1 mm created the optimal flange size for a 5-0 polypropylene suture when used for a 27-gauge needle scleral tunnel and for a 6-0 polypropylene suture when used for a 30-gauge needle scleral tunnel. Alternatively, 2 mm heating of a 6-0 polypropylene suture fits well for a 27-gauge needle tunnel. Even gentle forceps grip caused flattening of the polypropylene sutures but did not influence shaping and sizing of the flange.
Asunto(s)
Lentes Intraoculares , Polipropilenos , Humanos , Implantación de Lentes Intraoculares/métodos , Técnicas de Sutura , Esclerótica/cirugía , SuturasRESUMEN
X-linked hypophosphatemia (XLH) is characterized by excess fibroblast growth factor 23 (FGF23) secretion, renal phosphate wasting, and low 1,25(OH)2 D3 . Adult patients present with osteomalacia, hypomineralized periosteocytic lesions, bone fragility, and pain. Burosumab is a fully human monoclonal FGF23 antibody approved for XLH treatment. UX023-CL304 was an open-label, phase 3 study investigating the effects of burosumab on osteomalacia in adults with XLH, who remained untreated at least 2 years prior enrollment. Here, we present the effect of burosumab on bone material properties. We analyzed transiliac bone biopsy samples from 11 individuals before and after 48 weeks of subcutaneous burosumab treatment (1.0 mg/kg administered every 4 weeks). We used quantitative backscattered electron imaging (qBEI) and Fourier transform infrared imaging (FTIRI) to assess bone mineralization density distribution (BMDD), mineralized bone volume, properties of the organic matrix, and size of periosteocytic lesions. The outcomes were compared with reference values from healthy adults and with four XLH patients either untreated or treated by conventional therapy. Prior to burosumab, the average mineralization in cancellous bone was lower than in healthy reference. CaLow, the fraction of lowly mineralized matrix, and CaHigh, the fraction of highly mineralized matrix, were both elevated resulting in a broad heterogeneity in mineralization (CaWidth). Burosumab resulted in a decrease of CaHigh toward normal range, whereas CaLow and CaWidth remained elevated. The mineralized bone volume was notably increased (+35.9%). The size of the periosteocytic lesions was variable but lower than in untreated XLH patients. FTIRI indicated decreased enzymatic collagen crosslink ratio heterogeneity. In summary, matrix mineralization in XLH is very heterogeneous. Highly mineralized regions represent old bone packets, probably protected from osteoclastic resorption by osteoid seams. The concomitant decrease of highly mineralized matrix, persistence of lowly mineralized matrix, and increase in mineralized bone volume after burosumab suggest a boost in mineralization of preexisting unmineralized or very lowly mineralized matrix, providing a potential explanation for previously observed improved osteomalacia. © 2022 American Society for Bone and Mineral Research (ASBMR).
Asunto(s)
Anticuerpos Monoclonales Humanizados , Raquitismo Hipofosfatémico Familiar , Adulto , Anticuerpos Monoclonales Humanizados/uso terapéutico , Matriz Ósea , Calcificación Fisiológica , Calcinosis , Raquitismo Hipofosfatémico Familiar/tratamiento farmacológico , Factores de Crecimiento de Fibroblastos , Humanos , Osteomalacia/tratamiento farmacológicoRESUMEN
INTRODUCTION: Osteogenesis imperfecta (OI) is a heterogenous group of heritable connective tissue disorders characterized by high bone fragility due to low bone mass and impaired bone material properties. Atypical type VI OI is an extremely rare and severe form of bone dysplasia resulting from a loss-of-function mutation (p.S40L) in IFITM5/BRIL,the causative gene of OI type V and decreased osteoblast secretion of pigment epithelium-derived factor (PEDF), as in OI type VI. It is not yet known which alterations at the material level might lead to such a severe phenotype. We therefore characterized bone tissue at the micrometer level in a novel heterozygous Ifitm5/BRIL p.S42L knock-in murine model at 4 and 8â¯weeks of age. METHODS: We evaluated in female mice, total body size, femoral and lumbar bone mineral density (BMD) by dual-energy X-ray absorptiometry. In the femoral bone we examined osteoid deposition by light microscopy, assessed bone histomorphometry and mineralization density distribution by quantitative backscattered electron imaging (qBEI). Osteocyte lacunae were examined by qBEI and the osteocyte lacuno-canalicular network by confocal laser scanning microscopy. Vasculature was examined indirectly by qBEI as 2D porosity in cortex, and as 3D porosity by micro-CT in third trochanter. Collagen orientation was examined by second harmonic generation microscopy. Two-way ANOVA was used to discriminate the effect of age and genotype. RESULTS: Ifitm5/BRIL p.S42L female mice are viable, do not differ in body size, fat and lean mass from wild type (WT) littermates but have lower whole-body, lumbar and femoral BMD and multiple fractures. The average and most frequent calcium concentration, CaMean and CaPeak, increased with age in metaphyseal and cortical bone in both genotypes and were always higher in Ifitm5/BRIL p.S42L than in WT, except CaMean in metaphysis at 4â¯weeks of age. The fraction of highly mineralized bone area, CaHigh, was also increased in Ifitm5/BRIL p.S42L metaphyseal bone at 8â¯weeks of age and at both ages in cortical bone. The fraction of lowly mineralized bone area, CaLow, decreased with age and was not higher in Ifitm5/BRIL p.S42L, consistent with lack of hyperosteoidosis on histological sections by visual exam. Osteocyte lacunae density was higher in Ifitm5/BRIL p.S42L than WT, whereas canalicular density was decreased. Indirect measurements of vascularity revealed a higher pore density at 4â¯weeks in cortical bone of Ifitm5/BRIL p.S42L than in WT and at both ages in the third trochanter. Importantly, the proportion of bone area with disordered collagen fibrils was highly increased in Ifitm5/BRIL p.S42L at both ages. CONCLUSIONS: Despite normal skeletal growth and the lack of a collagen gene mutation, the Ifitm5/BRIL p.S42L mouse shows major OI-related bone tissue alterations such as hypermineralization of the matrix and elevated osteocyte porosity. Together with the disordered lacuno-canalicular network and the disordered collagen fibril orientation, these abnormalities likely contribute to overall bone fragility.
Asunto(s)
Modelos Animales de Enfermedad , Osteogénesis Imperfecta , Animales , Densidad Ósea/genética , Huesos/patología , Colágeno , Femenino , Técnicas de Sustitución del Gen , Proteínas de la Membrana/genética , Ratones , Osteogénesis Imperfecta/diagnóstico por imagen , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/patologíaRESUMEN
Osteopetrosis is a heterogeneous group of rare hereditary diseases characterized by increased bone mass of poor quality. Autosomal-dominant osteopetrosis type II (ADOII) is most often caused by mutation of the CLCN7 gene leading to impaired bone resorption. Autosomal recessive osteopetrosis (ARO) is a more severe form and is frequently accompanied by additional morbidities. We report an adult male presenting with classical clinical and radiological features of ADOII. Genetic analyses showed no amino-acid-converting mutation in CLCN7 but an apparent haploinsufficiency and suppression of CLCN7 mRNA levels in peripheral blood mononuclear cells. Next generation sequencing revealed low-frequency intronic homozygous variations in CLCN7, suggesting recessive inheritance. In silico analysis of an intronic duplication c.595-120_595-86dup revealed additional binding sites for Serine- and Arginine-rich Splicing Factors (SRSF), which is predicted to impair CLCN7 expression. Quantitative backscattered electron imaging and histomorphometric analyses revealed bone tissue and material abnormalities. Giant osteoclasts were present and additionally to lamellar bone, and abundant woven bone and mineralized cartilage were observed, together with increased frequency and thickness of cement lines. Bone mineralization density distribution (BMDD) analysis revealed markedly increased average mineral content of the dense bone (CaMean T-score + 10.1) and frequency of bone with highest mineral content (CaHigh T-score + 19.6), suggesting continued mineral accumulation and lack of bone remodelling. Osteocyte lacunae sections (OLS) characteristics were unremarkable except for an unusually circular shape. Together, our findings suggest that the reduced expression of CLCN7 mRNA in osteoclasts, and possibly also osteocytes, causes poorly remodelled bone with abnormal bone matrix with high mineral content. This together with the lack of adequate bone repair mechanisms makes the material brittle and prone to fracture. While the skeletal phenotype and medical history were suggestive of ADOII, genetic analysis revealed that this is a possible mild case of ARO due to deep intronic mutation.