Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
FEMS Microbiol Lett ; 369(1)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35167670

RESUMEN

The aim of this investigation was to discover the promoters that drive expression of the sig genes encoding sigma factors of RNA polymerase in Rhodococcus erythropolis CCM2595 and classify these promoters according to the sigma factors which control their activity. To analyze the regulation of major sigma factors, which control large regulons that also contain genes expressed under exponential growth and non-stressed conditions, we used the R. erythropolis CCM2595 culture, which grew rapidly in minimal medium. The transcriptional start sites (TSSs) of the genes sigA, sigB, sigD, sigE, sigG, sigH, sigJ, and sigK were detected by primary 5'-end-specific RNA sequencing. The promoters localized upstream of the detected TSSs were defined by their -35 and -10 elements, which were identical or closely similar to these sequences in the related species Corynebacterium glutamicum and Mycobacterium tuberculosis. Regulation of the promoter activities by different sigma factors was demonstrated by two independent techniques (in vivo and in vitro). All analyzed sig genes encoding the sigma factors with extracytoplasmic function (ECF) were found to be also driven from additional housekeeping promoters. Based on the classification of the sig gene promoters, a model of the basic sigma transcriptional regulatory network in R. erythropolis was designed.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Proteínas Bacterianas/metabolismo , Redes Reguladoras de Genes , Rhodococcus , Factor sigma/metabolismo , Transcripción Genética
2.
Curr Microbiol ; 79(2): 55, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34982253

RESUMEN

Rhodococcus erythropolis CCM2595 is a bacterial strain, which has been studied for its capability to degrade phenol and other toxic aromatic compounds. Its cell wall contains mycolic acids, which are also an attribute of other bacteria of the Mycolata group, such as Corynebacterium and Mycobacterium species. We suppose that many genes upregulated by phenol stress in R. erythropolis are controlled by the alternative sigma factors of RNA polymerase, which are active in response to the cell envelope or oxidative stress. We developed in vitro and in vivo assays to examine the connection between the stress sigma factors and genes activated by various extreme conditions, e.g., heat, cell surface, and oxidative stress. These assays are based on the procedures of such tests carried out in the related species, Corynebacterium glutamicum. We showed that the R. erythropolis CCM2595 genes frmB1 and frmB2, which encode S-formylglutathione hydrolases (named corynomycolyl transferases in C. glutamicum), are controlled by SigD, just like the homologous genes cmt1 and cmt2 in C. glutamicum. The new protocol of the in vivo and in vitro assays will enable us to classify R. erythropolis promoters according to their connection to sigma factors and to assign the genes to the corresponding sigma regulons. The complex stress responses, such as that induced by phenol, could, thus, be analyzed with respect to the gene regulation by sigma factors.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Regiones Promotoras Genéticas , Rhodococcus , Factor sigma , Corynebacterium glutamicum/genética , ARN Polimerasas Dirigidas por ADN/genética , Rhodococcus/enzimología , Rhodococcus/genética , Factor sigma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...