Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Hum Evol ; 190: 103498, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581918

RESUMEN

The Homa Peninsula, in southwestern Kenya, continues to yield insights into Oldowan hominin landscape behaviors. The Late Pliocene locality of Nyayanga (∼3-2.6 Ma) preserves some of the oldest Oldowan tools. At the Early Pleistocene locality of Kanjera South (∼2 Ma) toolmakers procured a diversity of raw materials from over 10 km away and strategically reduced them in a grassland-dominated ecosystem. Here, we report findings from Sare-Abururu, a younger (∼1.7 Ma) Oldowan locality approximately 12 km southeast of Kanjera South and 18 km east of Nyayanga. Sare-Abururu has yielded 1754 artifacts in relatively undisturbed low-energy silts and sands. Stable isotopic analysis of pedogenic carbonates suggests that hominin activities were carried out in a grassland-dominated setting with similar vegetation structure as documented at Kanjera South. The composition of a nearby paleo-conglomerate indicates that high-quality stone raw materials were locally abundant. Toolmakers at Sare-Abururu produced angular fragments from quartz pebbles, representing a considerable contrast to the strategies used to reduce high quality raw materials at Kanjera South. Although lithic reduction at Sare-Abururu was technologically simple, toolmakers proficiently produced cutting edges, made few mistakes and exhibited a mastery of platform management, demonstrating that expedient technical strategies do not necessarily indicate a lack of skill or suitable raw materials. Lithic procurement and reduction patterns on the Homa Peninsula appear to reflect variation in local resource contexts rather than large-scale evolutionary changes in mobility, energy budget, or toolmaker cognition.


Asunto(s)
Hominidae , Animales , Kenia , Ecosistema , Evolución Biológica , Carbonatos , Arqueología , Fósiles
2.
Science ; 379(6632): 561-566, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36758076

RESUMEN

The oldest Oldowan tool sites, from around 2.6 million years ago, have previously been confined to Ethiopia's Afar Triangle. We describe sites at Nyayanga, Kenya, dated to 3.032 to 2.581 million years ago and expand this distribution by over 1300 kilometers. Furthermore, we found two hippopotamid butchery sites associated with mosaic vegetation and a C4 grazer-dominated fauna. Tool flaking proficiency was comparable with that of younger Oldowan assemblages, but pounding activities were more common. Tool use-wear and bone damage indicate plant and animal tissue processing. Paranthropus sp. teeth, the first from southwestern Kenya, possessed carbon isotopic values indicative of a diet rich in C4 foods. We argue that the earliest Oldowan was more widespread than previously known, used to process diverse foods including megafauna, and associated with Paranthropus from its onset.


Asunto(s)
Evolución Biológica , Dieta , Conducta Alimentaria , Hominidae , Animales , Huesos , Fósiles , Kenia , Plantas , Paleontología
3.
J Hum Evol ; 140: 102338, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-29033136

RESUMEN

Carbon isotope ratios of mammalian teeth from the Kanapoi site in northern Kenya are interpreted in the context of C3 and C4 derived resources to investigate the paleoecology of Australopithecus anamensis. δ13C values of large mammals, when compared at the taxon level, show an ecosystem that is strongly biased towards mixed feeders and browsers. However, sufficient C4 resources were present such that some C4 dominated grazers were also present in the large mammal fauna. Analyses of micromammals shows that their diets were C3 dominated or C3-C4 mixed. Carbon isotope studies of primates shows that the major primate tribes-Colobini, Papioini, Hominini-all made some use of C4 resources in their respective diets; the Hominini had a higher fraction of C3 diet resources than the other primate tribes represented in the fossil record.


Asunto(s)
Dieta/veterinaria , Mamíferos/fisiología , Animales , Ecosistema , Fósiles , Kenia
4.
Proc Natl Acad Sci U S A ; 114(28): 7331-7336, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28652366

RESUMEN

Aridification is often considered a major driver of long-term ecological change and hominin evolution in eastern Africa during the Plio-Pleistocene; however, this hypothesis remains inadequately tested owing to difficulties in reconstructing terrestrial paleoclimate. We present a revised aridity index for quantifying water deficit (WD) in terrestrial environments using tooth enamel δ18O values, and use this approach to address paleoaridity over the past 4.4 million years in eastern Africa. We find no long-term trend in WD, consistent with other terrestrial climate indicators in the Omo-Turkana Basin, and no relationship between paleoaridity and herbivore paleodiet structure among fossil collections meeting the criteria for WD estimation. Thus, we suggest that changes in the abundance of C4 grass and grazing herbivores in eastern Africa during the Pliocene and Pleistocene may have been decoupled from aridity. As in modern African ecosystems, other factors, such as rainfall seasonality or ecological interactions among plants and mammals, may be important for understanding the evolution of C4 grass- and grazer-dominated biomes.


Asunto(s)
Clima , Fósiles , Hominidae , Paleontología , África Oriental , Animales , Evolución Biológica , Biomasa , Celulosa/análisis , Esmalte Dental/química , Ecología , Ecosistema , Ambiente , Geografía , Herbivoria , Kenia , Isótopos de Oxígeno/análisis , Hojas de la Planta/metabolismo , Plantas , Poaceae , Análisis de Regresión
5.
Am J Primatol ; 79(6)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28345759

RESUMEN

Stable isotope analysis of primate tissues in tropical forest contexts is an increasingly popular means of obtaining information about niche distinctions among sympatric species, including preferences in feeding height, forest canopy density, plant parts, and trophism. However, issues of equifinality mean that feeding height, canopy density, as well as the plant parts and plant species consumed, may produce similar or confounding effects. With a few exceptions, researchers have so far relied largely on general principles and/or limited plant data from the study area as references for deducing the predominant drivers of primate isotope variation. Here, we explore variation in the stable carbon (δ13 C), nitrogen (δ15 N), and oxygen (δ18 O) isotope ratios of 288 plant samples identified as important to the three primate species from the Polonnaruwa Nature Sanctuary, Sri Lanka, relative to plant part, season, and canopy height. Our results show that plant part and height have the greatest effect on the δ13 C and δ18 O measurements of plants of immediate relevance to the primates, Macaca sinica, Semnopithecus priam thersites, and Trachypithecus vetulus, living in this monsoonal tropical forest. We find no influence of plant part, height or season on the δ15 N of measured plants. While the plant part effect is particularly pronounced in δ13 C between fruits and leaves, differential feeding height, and plant taxonomy influence plant δ13 C and δ18 O differences in addition to plant organ. Given that species composition in different regions and forest types will differ, the results urge caution in extrapolating general isotopic trends without substantial local baselines studies.


Asunto(s)
Bosques , Primates , Animales , Isótopos de Carbono/análisis , Isótopos de Nitrógeno/análisis , Isótopos de Oxígeno/análisis , Plantas Comestibles , Sri Lanka
6.
Sci Rep ; 6: 32807, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27616433

RESUMEN

Megaherbivores (>1000 kg) are critical for ecosystem health and function, but face population collapse and extinction globally. The future of these megaherbivore-impoverished ecosystems is difficult to predict, though many studies have demonstrated increasing representation of C3 woody plants. These studies rely on direct observational data, however, and tools for assessing decadal-scale changes in African ecology without observation are lacking. We use isotopic records of historical common hippopotamus (Hippopotamus amphibius) canines to quantify herbaceous vegetation change in Queen Elizabeth National Park, Uganda following a period of civil unrest and poaching. This poaching event led to population collapse of two threatened African megaherbivore species: hippopotamus and African elephants (Loxodonta africana). Serial carbon isotope ratios (δ(13)C) in canine enamel from individuals that lived between 1960-2000 indicated substantial increases in C3 herbaceous plants in their diet (<20% C3 in the 1960s to 30-45% C3 in the 80s and 90s), supported by other observational and ecological data. These data indicate megaherbivore loss results in succession of both woody and herbaceous C3 vegetation and further reaching effects, such as decreased grazing capacity and herbivore biodiversity in the area. Given multiple lines of evidence, these individuals appear to accurately capture herbaceous vegetation change in Mweya.


Asunto(s)
Alimentación Animal/análisis , Artiodáctilos/fisiología , Diente Canino/química , Elefantes/fisiología , Animales , Isótopos de Carbono/análisis , Ecosistema , Extinción Biológica , Herbivoria , Vigilancia de la Población , Uganda
7.
Am J Primatol ; 78(10): 1041-54, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26444915

RESUMEN

Stable isotope analysis is a promising tool for investigating primate ecology although nuanced ecological applications remain challenging, in part due to the complex nature of isotopic variability in plant-animal systems. The aim of this study is to investigate sources of carbon and nitrogen isotopic variation at the base of primate food webs that reflect aspects of primate ecology. The majority of primates inhabit tropical forest ecosystems, which are dominated by C3 vegetation. We used stable isotope ratios in plants from Kibale National Park, Uganda, a well-studied closed-canopy tropical forest, to investigate sources of isotopic variation among C3 plants related to canopy stratification, leaf age, and plant part. Unpredictably, our results demonstrate that vertical stratification within the canopy does not explain carbon or nitrogen isotopic variation in leaves. Leaf age can be a significant source of isotopic variation, although the direction and magnitude of this difference is not consistent across tree species. Some plant parts are clearly differentiated in carbon and nitrogen isotopic composition, particularly leaves compared to non-photosynthetic parts such as reproductive parts and woody stem parts. Overall, variation in the isotopic composition of floral communities, plant species, and plant parts demonstrates that stable isotope studies must include analysis of local plant species and parts consumed by the primates under study from within the study area. Am. J. Primatol. 78:1041-1054, 2016. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Isótopos de Carbono , Hojas de la Planta/química , Primates , Animales , Dieta , Ecología , Bosques , Plantas , Árboles , Uganda
8.
Proc Natl Acad Sci U S A ; 112(37): 11467-72, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26240344

RESUMEN

A large stable isotope dataset from East and Central Africa from ca. 30 regional collection sites that range from forest to grassland shows that most extant East and Central African large herbivore taxa have diets dominated by C4 grazing or C3 browsing. Comparison with the fossil record shows that faunal assemblages from ca. 4.1-2.35 Ma in the Turkana Basin had a greater diversity of C3-C4 mixed feeding taxa than is presently found in modern East and Central African environments. In contrast, the period from 2.35 to 1.0 Ma had more C4-grazing taxa, especially nonruminant C4-grazing taxa, than are found in modern environments in East and Central Africa. Many nonbovid C4 grazers became extinct in Africa, notably the suid Notochoerus, the hipparion equid Eurygnathohippus, the giraffid Sivatherium, and the elephantid Elephas. Other important nonruminant C4-grazing taxa switched to browsing, including suids in the lineage Kolpochoerus-Hylochoerus and the elephant Loxodonta. Many modern herbivore taxa in Africa have diets that differ significantly from their fossil relatives. Elephants and tragelaphin bovids are two groups often used for paleoecological insight, yet their fossil diets were very different from their modern closest relatives; therefore, their taxonomic presence in a fossil assemblage does not indicate they had a similar ecological function in the past as they do at present. Overall, we find ecological assemblages of C3-browsing, C3-C4-mixed feeding, and C4-grazing taxa in the Turkana Basin fossil record that are different from any modern ecosystem in East or Central Africa.


Asunto(s)
Dieta/veterinaria , Herbivoria/fisiología , Mamíferos/fisiología , Animales , Evolución Biológica , Isótopos de Carbono/análisis , Ecología , Ecosistema , Fósiles , Hominidae , Kenia , Paleontología , Datación Radiométrica , Porcinos
9.
Proc Natl Acad Sci U S A ; 109(52): 21277-82, 2012 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-23236160

RESUMEN

We use stable isotope ratios in feces of wild mountain gorillas (Gorilla beringei) to test the hypothesis that diet shifts within a single year, as measured by dry mass intake, can be recovered. Isotopic separation of staple foods indicates that intraannual changes in the isotopic composition of feces reflect shifts in diet. Fruits are isotopically distinct compared with other staple foods, and peaks in fecal δ(13)C values are interpreted as periods of increased fruit feeding. Bayesian mixing model results demonstrate that, although the timing of these diet shifts match observational data, the modeled increase in proportional fruit feeding does not capture the full shift. Variation in the isotopic and nutritional composition of gorilla foods is largely independent, highlighting the difficulty for estimating nutritional intake with stable isotopes. Our results demonstrate the potential value of fecal sampling for quantifying short-term, intraindividual dietary variability in primates and other animals with high temporal resolution even when the diet is composed of C(3) plants.


Asunto(s)
Dieta/veterinaria , Heces/química , Gorilla gorilla/metabolismo , Marcaje Isotópico/métodos , Animales , Teorema de Bayes , Isótopos de Carbono , Femenino , Frutas , Isótopos de Nitrógeno , Uganda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...