Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
3D Print Addit Manuf ; 11(2): e718-e730, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38689909

RESUMEN

The demand for biomimetic and biocompatible scaffolds in equivalence of structure and material composition for the regeneration of bone tissue is relevantly high. This article is investigating a novel three-dimensional (3D) printed porous structure called bone bricks with a gradient pore size mimicking the structure of the bone tissue. Poly-ɛ-caprolactone (PCL) combined with ceramics such as hydroxyapatite (HA), ß-tricalcium phosphate (TCP), and bioglass 45S5 were successfully mixed using a melt blending method and fabricated with the use of screw-assisted extrusion-based additive manufacturing system. Bone bricks containing the same material concentration (20 wt%) were biologically characterized through proliferation and differentiation tests. Scanning electron microscopy (SEM) was used to investigate the morphology of cells on the surface of bone bricks, whereas energy dispersive X-ray (EDX) spectroscopy was used to investigate the element composition on the surface of the bone bricks. Confocal imaging was used to investigate the number of differentiated cells on the surface of bone bricks. Proliferation results showed that bone bricks containing PCL/HA content are presenting higher proliferation properties, whereas differentiation results showed that bone bricks containing PCL/Bioglass 45S5 are presenting higher differentiation properties. Confocal imaging results showed that bone bricks containing PCL/Bioglass 45S5 are presenting a higher number of differentiated cells on their surface compared with the other material contents.

2.
ACS Omega ; 9(19): 21388-21400, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38764657

RESUMEN

Focal cartilage defects are a prevalent knee problem affecting people of all ages. Articular cartilage (AC) possesses limited healing potential, and osteochondral defects can lead to pain and long-term complications such as osteoarthritis. Autologous chondrocyte implantation (ACI) has been a successful surgical approach for repairing osteochondral defects over the past two decades. However, a major drawback of ACI is the dedifferentiation of chondrocytes during their in vitro expansion. In this study, we isolated ovine chondrocytes and cultured them in a two-dimensional environment for ACI procedures. We hypothesized that 3D scaffolds would support the cells' redifferentiation without the need for growth factors so we encapsulated them into soft collagen and alginate (col/alg) hydrogels. Chondrocytes embedded into the hydrogels were viable and proliferated. After 7 days, they regained their original rounded morphology (aspect ratio 1.08) and started to aggregate. Gene expression studies showed an upregulation of COL2A1, FOXO3A, FOXO1, ACAN, and COL6A1 (37, 1.13, 22, 1123, and 1.08-fold change expression, respectively) as early as day one. At 21 days, chondrocytes had extensively colonized the hydrogel, forming large cell clusters. They started to replace the degrading scaffold by depositing collagen II and aggrecan, but with limited collagen type I deposition. This approach allows us to overcome the limitations of current approaches such as the dedifferentiation occurring in 2D in vitro expansion and the necrotic formation in spheroids. Further studies are warranted to assess long-term ECM deposition and integration with native cartilage. Though limitations exist, this study suggests a promising avenue for cartilage repair with col/alg hydrogel scaffolds.

3.
Biomater Adv ; 161: 213873, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38692180

RESUMEN

The muscle tendon junction (MTJ) plays a crucial role in transmitting the force generated by muscles to the tendon and then to the bone. Injuries such as tears and strains frequently happen at the MTJ, where the regenerative process is limited due to poor vascularization and the complex structure of the tissue. Current solutions for a complete tear at the MTJ have not been successful and therefore, the development of a tissue-engineered MTJ may provide a more effective treatment. In this study, decellularised extracellular matrix (DECM) derived from sheep MTJ was used to provide a scaffold for the MTJ with the relevant mechanical properties and differentiation cues such as the relase of growth factors. Human mesenchymal stem cells (MSCs) were seeded on DECM and 10 % cyclic strain was applied using a bioreactor. MSCs cultured on DECM showed significantly higher gene and protein expression of MTJ markers such as collagen 22, paxillin and talin, than MSCs in 2D culture. Although collagen 22 protein expression was higher in the cells with strain than without strain, reduced gene expression of other MTJ markers was observed when the strain was applied. DECM combined with 10 % strain enhanced myogenic differentiation, while tenogenic differentiation was reduced when compared to static cultures of MSCs on DECM. For the first time, these results showed that DECM derived from the MTJ can induce MTJ marker gene and protein expression by MSCs, however, the effect of strain on the MTJ development in DECM culture needs further investigation.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas , Tendones , Ingeniería de Tejidos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Tendones/citología , Tendones/metabolismo , Tendones/fisiología , Humanos , Animales , Ingeniería de Tejidos/métodos , Ovinos , Andamios del Tejido/química , Matriz Extracelular Descelularizada/metabolismo , Resistencia a la Tracción , Matriz Extracelular/metabolismo , Células Cultivadas
4.
Arthroplasty ; 6(1): 17, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38429812

RESUMEN

BACKGROUND: Limb-salvage surgery involving the utilization of endoprosthetic replacements is commonly employed following segmental bone resection for primary and secondary bone tumors. This study aimed to evaluate whether a fully porous bridging collar promotes early osseous integration in endoprosthetic replacements. METHODS: We undertook a retrospective review of all lower-limb endoprostheses utilizing a fully porous endosteal bridging collar design. We matched this cohort with a conventional extra-osteal non-porous fully hydroxyapatite-coated grooved collar cohort according to surgical indication, implant type, resection length, age, and follow-up time. At 6, 12, and 24 months post-implantation, radiographs were assessed for the number of cortices with or without osseointegration on orthogonal radiographs. Each radiograph was scored on a scale of -4 to + 4 for the number of cortices bridging the ongrowth between the bone and the collar of the prosthesis. Implant survival was estimated using the Kaplan-Meier method, and the mean number of osseointegrated cortices at each time point between the collar designs was compared using a paired t-test. RESULTS: Ninety patients were retrospectively identified and analyzed. After exclusion, 40 patients with porous bridging collars matched with 40 patients with conventional extra-osteal non-porous collars were included in the study (n = 80). The mean age was 63.4 years (range 16-91 years); there were 37 males and 43 females. The groups showed no difference in implant survival (P = 0.54). The mean number of cortices with radiographic ongrowth for the porous bridging collar and non-porous collar groups was 2.1 and 0.3, respectively, at 6-month (P < 0.0001), 2.4 and 0.5, respectively, at 12-month (P = 0.044), and 3.2 and -0.2, respectively, at 24-month (P = 0.18) radiological follow-up. CONCLUSION: These findings indicate that fully porous bridging collars increased the number of cortices, with evidence of bone ongrowth between 6 and 24 months post-implantation. By contrast, extra-osteal collars exhibited reduced evidence of ongrowth between 6 and 24 months post-implantation. In the medium term, the use of a fully porous bridging collar may translate to a reduced incidence of aseptic loosening.

5.
Proc Inst Mech Eng H ; 238(4): 412-422, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38415608

RESUMEN

Percutaneous osseointegrated implants for individuals with lower limb amputation can increase mobility, reduce socket related pain, and improve quality of life. It would be useful to have an evaluation method to assess the interface between bone and implant. We assessed outpatient radiographs from the Intraosseous Transcutaneous Amputation Prosthesis clinical trial using an interface scoring system which summed and weighted equally measures of implant collar cortical ongrowth and radiolucency along the implant stem/bone interface. Radiographs from 12 participants with unilateral transfemoral amputations (10 males, 2 females, mean age = 43.2, SD = 7.4 years) in the clinical trial from cohort I (implanted in 2008/09) or cohort II (implanted in 2013/14) were collated (mean image span = 7.2, SD = 2.4 years), scale normalised, zoned, and measured in a repeatable way. Interface scores were calculated and then compared to clinical outcomes. Explanted participants received the lowest interface scores. A higher ratio of stem to residuum and shorter residuum's produced better interface scores and there was an association (weak correlation) between participants with thin cortices and the lowest interface scores. A tapered, cemented, non curved stem may provide advantageous fixation while stem alignment did not appear critical. In summary, the interface score successfully demonstrated a non-invasive evaluation of percutaneous osseointegrated implants interfaces when applied to the Intraosseous Transcutaneous Amputation Prosthesis clinical trial. The clinical significance of this work is to identify events leading to aseptic or septic implant removal and contribute to clinical guidelines for monitoring rehabilitation, design and surgical fixation choices.


Asunto(s)
Amputados , Miembros Artificiales , Prótesis Anclada al Hueso , Masculino , Femenino , Humanos , Adulto , Implantación de Prótesis , Oseointegración , Calidad de Vida , Fémur/cirugía , Amputados/rehabilitación , Amputación Quirúrgica , Diseño de Prótesis , Resultado del Tratamiento
6.
ACS Appl Bio Mater ; 7(3): 1735-1747, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38411089

RESUMEN

Resorbable Mg and Mg alloys have gained significant interest as promising biomedical materials. However, corrosion of these alloys can lead to premature reduction in their mechanical properties, and therefore their corrosion rate needs to be controlled. The aim of this study is to select an appropriate environment where the effects of coatings on the corrosion rate of the underlying Mg alloy can be discerned and measured in a relatively short time period. The corrosion resistance of uncoated AZ31 alloy in different solutions [Hank's Balanced Salt Solution, 1× phosphate buffered solution (PBS), 4× PBS, 0.9%, 3.5%, and 5 M sodium chloride (NaCl)] was determined by measuring the weight loss over a 2 week period. Upon exposure to physiological solutions, the uncoated AZ31 alloys exhibited a variable weight increase of 0.4 ± 0.4%. 3.5% and 5 M NaCl solutions led to 0.27 and 9.7 mm/year corrosion rates, respectively, where the compositions of corrosion products from AZ31 in all saline solutions were similar. However, the corrosion of the AZ31 alloy when coated by electrochemical oxidation with two phosphate coatings, one containing fluorine (PF) and another containing both fluorine and silica (PFS), showed 0.3 and 0.25 mm/year corrosion rates, respectively. This is more than 30 times lower than that of the uncoated alloy (7.8 mm/year), making them promising candidates for corrosion protection in severe corrosive environments. Cross-sections of the samples showed that the coatings protected the alloy from corrosion by preventing access of saline to the alloy surface, and this was further reinforced by corrosion products from both the alloy and the coatings forming an additional barrier. The information in this paper provides a methodology for evaluating the effects of coatings on the rate of corrosion of magnesium alloys.


Asunto(s)
Cáusticos , Materiales Biocompatibles Revestidos , Materiales Biocompatibles Revestidos/química , Corrosión , Cloruro de Sodio , Flúor , Aleaciones/química , Fosfatos , Solución Salina
7.
Bioengineering (Basel) ; 11(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38391598

RESUMEN

This study evaluated the use of silica/poly(tetrahydrofuran)/poly(ε-caprolactone) (SiO2/PTHF/PCL-diCOOH) 3D-printed scaffolds, with channel sizes of either 200 (SC-200) or 500 (SC-500) µm, as biomaterials to support the chondrogenesis of sheep bone marrow stem cells (oBMSC), under in vitro conditions. The objective was to validate the potential use of SiO2/PTHF/PCL-diCOOH for prospective in vivo ovine studies. The behaviour of oBMSC, with and without the use of exogenous growth factors, on SiO2/PTHF/PCL-diCOOH scaffolds was investigated by analysing cell attachment, viability, proliferation, morphology, expression of chondrogenic genes (RT-qPCR), deposition of aggrecan, collagen II, and collagen I (immunohistochemistry), and quantification of sulphated glycosaminoglycans (GAGs). The results showed that all the scaffolds supported cell attachment and proliferation with upregulation of chondrogenic markers and the deposition of a cartilage extracellular matrix (collagen II and aggrecan). Notably, SC-200 showed superior performance in terms of cartilage gene expression. These findings demonstrated that SiO2/PTHF/PCL-diCOOH with 200 µm pore size are optimal for promoting chondrogenic differentiation of oBMSC, even without the use of growth factors.

8.
Bioengineering (Basel) ; 11(2)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38391648

RESUMEN

We report, for the first time, the full-field 3D strain distribution of the muscle-tendon junction (MTJ). Understanding the strain distribution at the junction is crucial for the treatment of injuries and to predict tear formation at this location. Three-dimensional full-field strain distribution of mouse MTJ was measured using X-ray computer tomography (XCT) combined with digital volume correlation (DVC) with the aim of understanding the mechanical behavior of the junction under tensile loading. The interface between the Achilles tendon and the gastrocnemius muscle was harvested from adult mice and stained using 1% phosphotungstic acid in 70% ethanol. In situ XCT combined with DVC was used to image and compute strain distribution at the MTJ under a tensile load (2.4 N). High strain measuring 120,000 µÎµ, 160,000 µÎµ, and 120,000 µÎµ for the first principal stain (εp1), shear strain (γ), and von Mises strain (εVM), respectively, was measured at the MTJ and these values reduced into the body of the muscle or into the tendon. Strain is concentrated at the MTJ, which is at risk of being damaged in activities associated with excessive physical activity.

9.
Acta Orthop ; 95: 138-146, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38392247

RESUMEN

BACKGROUND AND PURPOSE: We previously showed promising primary stability and preservation of bone stock with the ultra-short neck-loading hip implant in total hip arthroplasty (THA). The aim of this study was to evaluate clinical outcome, implant stability, and bone mineral density (BMD). METHODS: 50 patients were treated with the ultra-short neck Primoris hip implant at baseline and 48 were available for evaluation at 5-year follow-up. 5 different patient-reported outcome measures (PROMs) including hip-specific scores, disease-specific and generic quality of life outcome measures, and an activity score were used. Furthermore, implant stability using radiostereometric analysis (RSA) and assessment of periprosthetic BMD using dual-energy X-ray absorptiometry (DXA) were applied. RESULTS: By 1-year follow-up, all PROMs showed improvements and remained high at 5-year follow-up. After initial distal translation (subsidence) and negative rotation around the z-axis (varus tilt) the implant showed stable fixation at 5-year follow-up with no further migration beyond 12 months. In the regions of interest (ROI) 3 and 4, BMD remained stable. In ROI 2, further bone loss of 12% was found at 5-year follow-up. CONCLUSION: Clinical outcome including PROMs was satisfying throughout the 5-year follow-up period. The hip implant remains stable with both bone preservation and loss 5 years after surgery.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Prótesis de Cadera , Humanos , Artroplastia de Reemplazo de Cadera/efectos adversos , Prótesis de Cadera/efectos adversos , Absorciometría de Fotón , Cuello Femoral/diagnóstico por imagen , Cuello Femoral/cirugía , Estudios Prospectivos , Análisis Radioestereométrico , Calidad de Vida , Estudios de Seguimiento , Densidad Ósea , Evaluación de Resultado en la Atención de Salud , Diseño de Prótesis
10.
J Mech Behav Biomed Mater ; 152: 106414, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38277908

RESUMEN

OBJECTIVE: The pathogenesis of osteoarthritis (OA) is associated with subchondral bone changes, which is linked to abnormal strain distribution in the overlying articular cartilage. This highlights the importance of understanding mechanical interaction at the cartilage-bone interface. The aim of this study is to compare solutions of two contrast-enhancing staining agents (CESA) for combining high-resolution Contrast-Enhanced X-ray microfocus Computed Tomography (CECT) with Digital Volume Correlation (DVC) for full-field strain measurements at the cartilage-bone interface. DESIGN: Bovine osteochondral plugs were stained with phosphotungstic acid (PTA) in 70% ethanol or 1:2 hafnium-substituted Wells-Dawson polyoxometalate (Hf-WD POM) in PBS. Mechanical properties were assessed using micromechanical probing and nanoindentation. Strain uncertainties (from CECT data) were evaluated following two consecutive unloaded scans. Residual strains were computed following unconfined compression (ex situ) testing. RESULTS: PTA and Hf-WD POM enabled the visualisation of structural features in cartilage, allowing DVC computation on the CECT data. Residual strains up to ∼10,000 µÉ› were detected up to the tidemark. Nanoindentation showed that PTA-staining caused an average ∼6-fold increase in articular cartilage stiffness, a ∼19-fold increase in reduced modulus and ∼7-fold increase in hardness, whereas Hf-WD POM-stained specimens had mechanical properties similar to pre-stain tissue. Micromechanical probing showed a 77% increase in cartilage surface stiffness after PTA-staining, in comparison to a 16% increase in stiffness after staining with Hf-WD POM. CONCLUSION: Hf-WD POM is a more suitable CESA solution compared to PTA for CECT imaging combined with DVC as it allowed visualisation of structural features in the cartilage tissue whilst more closely maintaining tissue mechanical properties.


Asunto(s)
Cartílago Articular , Medios de Contraste , Animales , Bovinos , Cartílago Articular/patología , Coloración y Etiquetado , Tomografía Computarizada por Rayos X/métodos , Rayos X
11.
Polymers (Basel) ; 16(1)2023 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-38201731

RESUMEN

Large bone reconstruction following trauma poses significant challenges for reconstructive surgeons, leading to a healthcare burden for health systems, long-term pain for patients, and complex disorders such as infections that are difficult to resolve. The use of bone substitutes is suboptimal for substantial bone loss, as they induce localized atrophy and are generally weak, and unable to support load. A combination of strong polycaprolactone (PCL)-based scaffolds, with an average channel size of 330 µm, enriched with 20% w/w of hydroxyapatite (HA), ß-tricalcium phosphate (TCP), or Bioglass 45S5 (Bioglass), has been developed and tested for bone regeneration in a critical-size ovine femoral condyle defect model. After 6 weeks, tissue ingrowth was analyzed using X-ray computed tomography (XCT), Backscattered Electron Microscopy (BSE), and histomorphometry. At this point, all materials promoted new bone formation. Histological analysis showed no statistical difference among the different biomaterials (p > 0.05), but PCL-Bioglass scaffolds enhanced bone formation in the center of the scaffold more than the other types of materials. These materials show potential to promote bone regeneration in critical-sized defects on load-bearing sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...