Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-34111527

RESUMEN

Phosphatidylinositol is the parent lipid for the synthesis of seven phosphorylated inositol lipids and each of them play specific roles in numerous processes including receptor-mediated signalling, actin cytoskeleton dynamics and membrane trafficking. PI synthesis is localised to the endoplasmic reticulum (ER) whilst its phosphorylated derivatives are found in other organelles where the lipid kinases also reside. Phosphorylation of PI to phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) at the plasma membrane and to phosphatidylinositol 4-phosphate (PI4P) at the Golgi are key events in lipid signalling and Golgi function respectively. Here we review a family of proteins, phosphatidylinositol transfer proteins (PITPs), that can mobilise PI from the ER to provide the substrate to the resident kinases for phosphorylation. Recent studies identify specific and overlapping functions for the three soluble PITPs (PITPα, PITPß and PITPNC1) in phospholipase C signalling, neuronal function, membrane trafficking, viral replication and in cancer metastases.


Asunto(s)
Fosfatidilinositoles/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Transducción de Señal
2.
Front Cell Dev Biol ; 8: 63, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117988

RESUMEN

Cytidine diphosphate diacylglycerol (CDP-DAG) is a key intermediate in the synthesis of phosphatidylinositol (PI) and cardiolipin (CL). Both PI and CL have highly specialized roles in cells. PI can be phosphorylated and these phosphorylated derivatives play major roles in signal transduction, membrane traffic, and maintenance of the actin cytoskeletal network. CL is the signature lipid of mitochondria and has a plethora of functions including maintenance of cristae morphology, mitochondrial fission, and fusion and for electron transport chain super complex formation. Both lipids are synthesized in different organelles although they share the common intermediate, CDP-DAG. CDP-DAG is synthesized from phosphatidic acid (PA) and CTP by enzymes that display CDP-DAG synthase activities. Two families of enzymes, CDS and TAMM41, which bear no sequence or structural relationship, have now been identified. TAMM41 is a peripheral membrane protein localized in the inner mitochondrial membrane required for CL synthesis. CDS enzymes are ancient integral membrane proteins found in all three domains of life. In mammals, they provide CDP-DAG for PI synthesis and for phosphatidylglycerol (PG) and CL synthesis in prokaryotes. CDS enzymes are critical for maintaining phosphoinositide levels during phospholipase C (PLC) signaling. Hydrolysis of PI (4,5) bisphosphate by PLC requires the resynthesis of PI and CDS enzymes catalyze the rate-limiting step in the process. In mammals, the protein products of two CDS genes (CDS1 and CDS2) localize to the ER and it is suggested that CDS2 is the major CDS for this process. Expression of CDS enzymes are regulated by transcription factors and CDS enzymes may also contribute to CL synthesis in mitochondria. Studies of CDS enzymes in protozoa reveal spatial segregation of CDS enzymes from the rest of the machinery required for both PI and CL synthesis identifying a key gap in our understanding of how CDP-DAG can cross the different membrane compartments in protozoa and in mammals.

3.
Artículo en Inglés | MEDLINE | ID: mdl-31173893

RESUMEN

Phosphatidylinositol (PI) is a minor phospholipid with a characteristic fatty acid profile; it is highly enriched in stearic acid at the sn-1 position and arachidonic acid at the sn-2 position. PI is phosphorylated into seven specific derivatives, and individual species are involved in a vast array of cellular functions including signalling, membrane traffic, ion channel regulation and actin dynamics. De novo PI synthesis takes place at the endoplasmic reticulum where phosphatidic acid (PA) is converted to PI in two enzymatic steps. PA is also produced at the plasma membrane during phospholipase C signalling, where hydrolysis of phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) leads to the production of diacylglycerol which is rapidly phosphorylated to PA. This PA is transferred to the ER to be also recycled back to PI. For the synthesis of PI, CDP-diacylglycerol synthase (CDS) converts PA to the intermediate, CDP-DG, which is then used by PI synthase to make PI. The de novo synthesised PI undergoes remodelling to acquire its characteristic fatty acid profile, which is altered in p53-mutated cancer cells. In mammals, there are two CDS enzymes at the ER, CDS1 and CDS2. In this review, we summarise the de novo synthesis of PI at the ER and the enzymes involved in its subsequent remodelling to acquire its characteristic acyl chains. We discuss how CDS, the rate limiting enzymes in PI synthesis are regulated by different mechanisms. During phospholipase C signalling, the CDS1 enzyme is specifically upregulated by cFos via protein kinase C.


Asunto(s)
Retículo Endoplásmico/metabolismo , Lipogénesis , Fosfatidilinositoles/metabolismo , Animales , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/metabolismo , Diacilglicerol Colinafosfotransferasa/metabolismo , Humanos , Ácidos Fosfatidicos/metabolismo , Proteína Quinasa C/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Fosfolipasas de Tipo C/metabolismo
4.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(10): 1412-1421, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31302248

RESUMEN

Yeast phosphatidylinositol transfer protein (PITP) Pdr17 is an essential component of the complex required for decarboxylation of phosphatidylserine (PS) to phosphatidylethanolamine (PE) at a non-mitochondrial location. According to current understanding, this process involves the transfer of PS from the endoplasmic reticulum to the Golgi/endosomes. We generated a Pdr17E237A, K269A mutant protein to better understand the mechanism by which Pdr17p participates in the processes connected to the decarboxylation of PS to PE. We show that the Pdr17E237A, K269A mutant protein is not capable of binding phosphatidylinositol (PI) using permeabilized human cells, but still retains the ability to transfer PI between two membrane compartments in vitro. We provide data together with molecular models showing that the mutations E237A and K269A changed only the lipid binding cavity of Pdr17p and not its surface properties. In contrast to Pdr16p, a close homologue, the ability of Pdr17p to bind PI is not required for its major cellular function in the inter-membrane transfer of PS. We hypothesize that these two closely related yeast PITPs, Pdr16p and Pdr17p, have evolved from a common ancestor. Pdr16p fulfills those role(s) in which the ability to bind and transfer PI is required, while Pdr17p appears to have adapted to a different role which does not require the high affinity binding of PI, although the protein retains the capacity to transfer PI. Our results indicate that PITPs function in complex ways in vivo and underscore the need to consider multiple PITP parameters when studying these proteins in vitro.


Asunto(s)
Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Proteínas de Transferencia de Fosfolípidos/química , Proteínas de Transferencia de Fosfolípidos/genética , Mutación Puntual , Unión Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Esteroles/metabolismo
5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(7): 1072-1082, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30862571

RESUMEN

Chronic stimulation (24 h) with vasopressin leads to hypertrophy in H9c2 cardiomyoblasts and this is accompanied by continuous activation of phospholipase C. Consequently, vasopressin stimulation leads to a depletion of phosphatidylinositol levels. The substrate for phospholipase C is phosphatidylinositol (4, 5) bisphosphate (PIP2) and resynthesis of phosphatidylinositol and its subsequent phosphorylation maintains the supply of PIP2. The resynthesis of PI requires the conversion of phosphatidic acid to CDP-diacylglycerol catalysed by CDP-diacylglycerol synthase (CDS) enzymes. To examine whether the resynthesis of PI is regulated by vasopressin stimulation, we focussed on the CDS enzymes. Three CDS enzymes are present in mammalian cells: CDS1 and CDS2 are integral membrane proteins localised at the endoplasmic reticulum and TAMM41 is a peripheral protein localised in the mitochondria. Vasopressin selectively stimulates an increase CDS1 mRNA that is dependent on protein kinase C, and can be inhibited by the AP-1 inhibitor, T-5224. Vasopressin also stimulates an increase in cFos protein which is inhibited by a protein kinase C inhibitor. We conclude that vasopressin stimulates CDS1 mRNA through phospholipase C, protein kinase C and cFos and provides a potential mechanism for maintenance of phosphatidylinositol levels during long-term phospholipase C signalling.


Asunto(s)
Diacilglicerol Colinafosfotransferasa/metabolismo , Miocitos Cardíacos/citología , Fosfolipasas de Tipo C/metabolismo , Vasopresinas/farmacología , Animales , Línea Celular , Hipertrofia/etiología , Miocitos Cardíacos/efectos de los fármacos , Fosfatidilinositoles/metabolismo , Proteína Quinasa C , Proteínas Proto-Oncogénicas c-fos , Ratas
6.
Cell Rep ; 24(6): 1389-1396, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30089250

RESUMEN

The lipid transporters of the phosphatidylinositol transfer protein (PITP) family dictate phosphoinositide compartmentalization, and specific phosphoinositides play crucial roles in signaling cascades, membrane traffic, ion channel regulation, and actin dynamics. Although PITPs are enriched in the brain, their physiological functions in neuronal signaling pathways in vivo remain ill defined. We describe a CRISPR/Cas9-generated zebrafish mutant in a brain-specific, conserved class II PITP member, pitpnc1a. Zebrafish pitpnc1a mutants are healthy but display widespread aberrant neuronal activity and increased wakefulness across the day-night cycle. The loss of Pitpnc1a increases insulin-like growth factor (IGF) signaling in the brain, and inhibition of IGF pathways is sufficient to rescue both neuronal and behavioral hyperactivity in pitpnc1a mutants. We propose that Pitpnc1a-expressing neurons alter behavior via modification of neuro-modulatory IGF that acts on downstream wake-promoting circuits.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/metabolismo , Proteínas de Transporte de Membrana/uso terapéutico , Vigilia/fisiología , Animales , Proteínas de Transporte de Membrana/farmacología , Transducción de Señal , Pez Cebra
7.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(3): 284-298, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29253589

RESUMEN

CDP diacylglycerol synthase (CDS) catalyses the conversion of phosphatidic acid (PA) to CDP-diacylglycerol, an essential intermediate in the synthesis of phosphatidylglycerol, cardiolipin and phosphatidylinositol (PI). CDS activity has been identified in mitochondria and endoplasmic reticulum of mammalian cells apparently encoded by two highly-related genes, CDS1 and CDS2. Cardiolipin is exclusively synthesised in mitochondria and recent studies in cardiomyocytes suggest that the peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1α and ß) serve as transcriptional regulators of mitochondrial biogenesis and up-regulate the transcription of the CDS1 gene. Here we have examined whether CDS1 is responsible for the mitochondrial CDS activity. We report that differentiation of H9c2 cells with retinoic acid towards cardiomyocytes is accompanied by increased expression of mitochondrial proteins, oxygen consumption, and expression of the PA/PI binding protein, PITPNC1, and CDS1 immunoreactivity. Both CDS1 immunoreactivity and CDS activity were found in mitochondria of H9c2 cells as well as in rat heart, liver and brain mitochondria. However, the CDS1 immunoreactivity was traced to a peripheral p55 cross-reactive mitochondrial protein and the mitochondrial CDS activity was due to a peripheral mitochondrial protein, TAMM41, not an integral membrane protein as expected for CDS1. TAMM41 is the mammalian equivalent of the recently identified yeast protein, Tam41. Knockdown of TAMM41 resulted in decreased mitochondrial CDS activity, decreased cardiolipin levels and a decrease in oxygen consumption. We conclude that the CDS activity present in mitochondria is mainly due to TAMM41, which is required for normal mitochondrial function.


Asunto(s)
Cardiolipinas/biosíntesis , Diacilglicerol Colinafosfotransferasa/metabolismo , Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Consumo de Oxígeno/fisiología , Animales , Cardiolipinas/genética , Línea Celular , Diacilglicerol Colinafosfotransferasa/genética , Mitocondrias Cardíacas/genética , Proteínas Mitocondriales/genética , Miocitos Cardíacos/citología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...