Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Med Genet A ; 194(3): e63462, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37929330

RESUMEN

We describe a family with two maternal half-brothers both of whom presented with muscular dystrophy, autism spectrum disorder, developmental delay, and sensorineural hearing loss. The elder brother had onset of features at ~3 months of age, followed by clinical confirmation of muscular dystrophy at 3 years. Skeletal biopsy staining at 4.7 years showed an absence of dystrophin protein which prompted extensive molecular testing over 4 years that included gene panels, targeted single-gene assays, arrays, and karyotyping, all of which failed to identify a clinically significant variant in the DMD gene. At 10 years of age, clinical whole-genome sequencing (cWGS) was performed, which revealed a novel hemizygous ~50.7 Mb balanced pericentric inversion on chromosome X that disrupts the DMD gene in both siblings, consistent with the muscular dystrophy phenotype. This inversion also impacts the upstream regulatory region of POU3F4, structural rearrangements which are known to cause hearing loss. The unaffected mother is a heterozygous carrier for the pericentric inversion. This finding illustrates the ability of cWGS to detect a wide breadth of disease-causing genomic variations including large genomic rearrangements.


Asunto(s)
Trastorno del Espectro Autista , Distrofias Musculares , Distrofia Muscular de Duchenne , Preescolar , Femenino , Humanos , Masculino , Trastorno del Espectro Autista/genética , Secuencia de Bases , Inversión Cromosómica/genética , Distrofina/genética , Distrofias Musculares/genética , Distrofia Muscular de Duchenne/genética , Factores del Dominio POU/genética
2.
Cell Genom ; 3(2): 100258, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36819666

RESUMEN

Current standards in clinical genetics recognize the need to establish the validity of gene-disease relationships as a first step in the interpretation of sequence variants. We describe our experience incorporating the ClinGen Gene-Disease Clinical Validity framework in our interpretation and reporting workflow for a clinical genome sequencing (cGS) test for individuals with rare and undiagnosed genetic diseases. This "reactive" gene curation is completed upon identification of candidate variants during active case analysis and within the test turn-around time by focusing on the most impactful evidence and taking advantage of the broad applicability of the framework to cover a wide range of disease areas. We demonstrate that reactive gene curation can be successfully implemented in support of cGS in a clinical laboratory environment, enabling robust clinical decision making and allowing all variants to be fully and appropriately considered and their clinical significance confidently interpreted.

3.
Am J Med Genet A ; 188(9): 2825-2831, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35670385

RESUMEN

PERCHING syndrome is a rare multisystem developmental disorder caused by autosomal recessive (AR) variants (truncating and missense) in the Kelch-like family member 7 gene (KLHL7). We report the first phenotypic and molecular description of PERCHING syndrome in a patient from Central Africa. The patient presented multiple dysmorphic features in addition to neurological, respiratory, gastroenteric, and dysautonomic disorders. Clinical Whole Genome Sequencing in the proband and his mother identified two novel heterozygous variants in the KLHL7 gene, including a maternally inherited intronic variant (NM_001031710.2:c.793 + 5G > C) classified as Variant of Uncertain Significance and a frameshift stop gain variant (NM_001031710.2:c.944delG; p.Ser315ThrfsTer23) of unknown inheritance classified as likely pathogenic. Although the diagnosis was only evoked after genomic testing, the review of published patients suggests that this disease could be clinically recognizable and maybe considered as an encephalopathy. Our report will allow expanding the phenotypic and molecular spectrum of Perching syndrome.


Asunto(s)
Codón sin Sentido , Heterocigoto , Humanos , Mutación , Secuenciación Completa del Genoma
4.
Genet Med ; 24(9): 1899-1908, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35616647

RESUMEN

PURPOSE: Neurodevelopmental disorders (NDDs), such as intellectual disability (ID) and autism spectrum disorder (ASD), exhibit genetic and phenotypic heterogeneity, making them difficult to differentiate without a molecular diagnosis. The Clinical Genome Resource Intellectual Disability/Autism Gene Curation Expert Panel (GCEP) uses systematic curation to distinguish ID/ASD genes that are appropriate for clinical testing (ie, with substantial evidence supporting their relationship to disease) from those that are not. METHODS: Using the Clinical Genome Resource gene-disease validity curation framework, the ID/Autism GCEP classified genes frequently included on clinical ID/ASD testing panels as Definitive, Strong, Moderate, Limited, Disputed, Refuted, or No Known Disease Relationship. RESULTS: As of September 2021, 156 gene-disease pairs have been evaluated. Although most (75%) were determined to have definitive roles in NDDs, 22 (14%) genes evaluated had either Limited or Disputed evidence. Such genes are currently not recommended for use in clinical testing owing to the limited ability to assess the effect of identified variants. CONCLUSION: Our understanding of gene-disease relationships evolves over time; new relationships are discovered and previously-held conclusions may be questioned. Without periodic re-examination, inaccurate gene-disease claims may be perpetuated. The ID/Autism GCEP will continue to evaluate these claims to improve diagnosis and clinical care for NDDs.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Trastorno Autístico/diagnóstico , Trastorno Autístico/genética , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética
5.
Am J Med Genet A ; 185(7): 2190-2197, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33931933

RESUMEN

Spinal muscular atrophy with congenital bone fractures 2 (SMABF2), a type of arthrogryposis multiplex congenita (AMC), is characterized by congenital joint contractures, prenatal fractures of long bones, and respiratory distress and results from biallelic variants in ASCC1. Here, we describe an infant with severe, diffuse hypotonia, congenital contractures, and pulmonary hypoplasia characteristic of SMABF2, with the unique features of cleft palate, small spleen, transverse liver, and pulmonary thromboemboli with chondroid appearance. This infant also had impaired coagulation with diffuse petechiae and ecchymoses which has only been reported in one other infant with AMC. Using trio whole genome sequencing, our proband was identified to have biallelic variants in ASCC1. Using deep next generation sequencing of parental cDNA, we characterized alteration of splicing encoded by the novel, maternally inherited ASCC1 variant (c.297-8 T > G) which provides a mechanism for functional pathogenicity. The paternally inherited ASCC1 variant is a rare nonsense variant (c.466C > T; p.Arg156*) that has been previously identified in one other infant with AMC. This report extends the phenotypic characteristics of ASCC1-associated AMC (SMABF2) and describes a novel intronic variant that partially disrupts RNA splicing.


Asunto(s)
Artrogriposis/genética , Proteínas Portadoras/genética , Atrofia Muscular Espinal/genética , Artrogriposis/diagnóstico por imagen , Artrogriposis/fisiopatología , Codón sin Sentido/genética , Femenino , Humanos , Recién Nacido , Atrofia Muscular Espinal/diagnóstico por imagen , Atrofia Muscular Espinal/fisiopatología , Secuenciación Completa del Genoma
6.
Genet Med ; 21(7): 1652-1656, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30568308

RESUMEN

PURPOSE: Brain malformations caused by 17p13.3 deletions include lissencephaly with deletions of the larger Miller-Dieker syndrome region or smaller deletions of only PAFAH1B1, white matter changes, and a distinct syndrome due to deletions including YWHAE and CRK but sparing PAFAH1B1. We sought to understand the significance of 17p13.3 deletions between the YWHAE/CRK and PAFAH1B1 loci. METHODS: We analyzed the clinical features of six individuals from five families with 17p13.3 deletions between and not including YWHAE/CRK and PAFAH1B1 identified among individuals undergoing clinical chromosomal microarray testing or research genome sequencing. RESULTS: Five individuals from four families had multifocal white matter lesions while a sixth had a normal magnetic resonance image. A combination of our individuals and a review of those in the literature with white matter changes and deletions in this chromosomal region narrows the overlapping region for this brain phenotype to ~345 kb, including 11 RefSeq genes, with RTN4RL1 haploinsufficiency as the best candidate for causing this phenotype. CONCLUSION: While previous literature has hypothesized dysmorphic features and white matter changes related to YWHAE, our cohort contributes evidence to the presence of additional genetic changes within 17p13.3 required for proper brain development.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 17 , Leucoencefalopatías/genética , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Proteínas 14-3-3/genética , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Recién Nacido , Leucoencefalopatías/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Proteínas Asociadas a Microtúbulos/genética
7.
Genet Med ; 21(5): 1121-1130, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30293986

RESUMEN

PURPOSE: Current diagnostic testing for genetic disorders involves serial use of specialized assays spanning multiple technologies. In principle, genome sequencing (GS) can detect all genomic pathogenic variant types on a single platform. Here we evaluate copy-number variant (CNV) calling as part of a clinically accredited GS test. METHODS: We performed analytical validation of CNV calling on 17 reference samples, compared the sensitivity of GS-based variants with those from a clinical microarray, and set a bound on precision using orthogonal technologies. We developed a protocol for family-based analysis of GS-based CNV calls, and deployed this across a clinical cohort of 79 rare and undiagnosed cases. RESULTS: We found that CNV calls from GS are at least as sensitive as those from microarrays, while only creating a modest increase in the number of variants interpreted (~10 CNVs per case). We identified clinically significant CNVs in 15% of the first 79 cases analyzed, all of which were confirmed by an orthogonal approach. The pipeline also enabled discovery of a uniparental disomy (UPD) and a 50% mosaic trisomy 14. Directed analysis of select CNVs enabled breakpoint level resolution of genomic rearrangements and phasing of de novo CNVs. CONCLUSION: Robust identification of CNVs by GS is possible within a clinical testing environment.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Enfermedades Raras/genética , Enfermedades no Diagnosticadas/genética , Adolescente , Niño , Preescolar , Mapeo Cromosómico/métodos , Estudios de Cohortes , Femenino , Pruebas Genéticas/métodos , Genoma Humano , Genómica/métodos , Humanos , Lactante , Masculino , Enfermedades Raras/diagnóstico , Enfermedades no Diagnosticadas/diagnóstico , Secuenciación Completa del Genoma/métodos , Adulto Joven
8.
Neuron ; 86(4): 1091-1099, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25996136

RESUMEN

Using genetic fate-mapping with Cux2-Cre and Cux2-CreERT2 mice we demonstrated that the neocortical ventricular zone (VZ) contains radial glial cells (RGCs) with restricted fate potentials (Franco et al., 2012). Using the same mouse lines, Guo et al. (2013) concluded that the neocortical VZ does not contain lineage-restricted RGCs. We now show that the recombination pattern in Cux2-Cre/CreERT2 mice depends on genetic background and breeding strategies. We provide evidence that Guo et al. likely reached different conclusions because they worked with transgenic sublines with drifted transgene expression patterns. In Cux2-Cre and Cux2-CreERT2 mice that recapitulate the endogenous Cux2 expression pattern, the vast majority of fate-mapped neurons express Satb2 but not Ctip2, confirming that a restricted subset of all neocortical projection neurons belongs to the Cux2 lineage. This Matters Arising paper is in response to Guo et al. (2013), published in Neuron. See also the Matters Arising Response paper by Eckler et al. (2015), published concurrently with this Matters Arising in Neuron.


Asunto(s)
Linaje de la Célula/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/genética , Integrasas/genética , Neuronas/citología , Neuronas/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/metabolismo , Ratones Transgénicos , Transgenes/genética
9.
Development ; 139(15): 2692-702, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22745311

RESUMEN

Neural progenitor cells within the developing thalamus are spatially organized into distinct populations. Their correct specification is critical for generating appropriate neuronal subtypes in specific locations during development. Secreted signaling molecules, such as sonic hedgehog (Shh) and Wnts, are required for the initial formation of the thalamic primordium. Once thalamic identity is established and neurogenesis is initiated, Shh regulates the positional identity of thalamic progenitor cells. Although Wnt/ß-catenin signaling also has differential activity within the thalamus during this stage of development, its significance has not been directly addressed. In this study, we used conditional gene manipulations in mice and explored the roles of ß-catenin signaling in the regional identity of thalamic progenitor cells. We found ß-catenin is required during thalamic neurogenesis to maintain thalamic fate while suppressing prethalamic fate, demonstrating that regulation of regional fate continues to require extrinsic signals. These roles of ß-catenin appeared to be mediated at least partly by regulating two basic helix-loop-helix (bHLH) transcription factors, Neurog1 and Neurog2. ß-Catenin and Shh signaling function in parallel to specify two progenitor domains within the thalamus, where individual transcription factors expressed in each progenitor domain were regulated differently by the two signaling pathways. We conclude that ß-catenin has multiple functions during thalamic neurogenesis and that both Shh and ß-catenin pathways are important for specifying distinct types of thalamic progenitor cells, ensuring that the appropriate neuronal subtypes are generated in the correct locations.


Asunto(s)
Proteínas Hedgehog/metabolismo , Células Madre/citología , Tálamo/citología , Tálamo/embriología , beta Catenina/metabolismo , Alelos , Animales , Linaje de la Célula , Cruzamientos Genéticos , Femenino , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Ratones , Ratones Transgénicos , Mutación , Neurogénesis , Fenotipo
10.
Neural Dev ; 6: 35, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-22077982

RESUMEN

BACKGROUND: The size and cell number of each brain region are influenced by the organization and behavior of neural progenitor cells during embryonic development. Recent studies on developing neocortex have revealed the presence of neural progenitor cells that divide away from the ventricular surface and undergo symmetric divisions to generate either two neurons or two progenitor cells. These 'basal' progenitor cells form the subventricular zone and are responsible for generating the majority of neocortical neurons. However, not much has been studied on similar types of progenitor cells in other brain regions. RESULTS: We have identified and characterized basal progenitor cells in the embryonic mouse thalamus. The progenitor domain that generates all of the cortex-projecting thalamic nuclei contained a remarkably high proportion of basally dividing cells. Fewer basal progenitor cells were found in other progenitor domains that generate non-cortex projecting nuclei. By using intracellular domain of Notch1 (NICD) as a marker for radial glial cells, we found that basally dividing cells extended outside the lateral limit of radial glial cells, indicating that, similar to the neocortex and ventral telencephalon, the thalamus has a distinct subventricular zone. Neocortical and thalamic basal progenitor cells shared expression of some molecular markers, including Insm1, Neurog1, Neurog2 and NeuroD1. Additionally, basal progenitor cells in each region also expressed exclusive markers, such as Tbr2 in the neocortex and Olig2 and Olig3 in the thalamus. In Neurog1/Neurog2 double mutant mice, the number of basally dividing progenitor cells in the thalamus was significantly reduced, which demonstrates the roles of neurogenins in the generation and/or maintenance of basal progenitor cells. In Pax6 mutant mice, the part of the thalamus that showed reduced Neurog1/2 expression also had reduced basal mitosis. CONCLUSIONS: Our current study establishes the existence of a unique and significant population of basal progenitor cells in the thalamus and their dependence on neurogenins and Pax6. These progenitor cells may have important roles in enhancing the generation of neurons within the thalamus and may also be critical for generating neuronal diversity in this complex brain region.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas del Ojo/fisiología , Proteínas de Homeodominio/fisiología , Células-Madre Neurales/fisiología , Factores de Transcripción Paired Box/fisiología , Proteínas Represoras/fisiología , Tálamo/citología , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proteínas del Ojo/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Masculino , Ratones , Ratones Transgénicos , Neocórtex/citología , Neocórtex/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Embarazo , Proteínas Represoras/genética , Tálamo/embriología , Tálamo/metabolismo , Factores de Transcripción/metabolismo
11.
Dev Dyn ; 238(12): 3297-309, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19924825

RESUMEN

In neural development, several Wnt genes are expressed in the vertebrate diencephalon, including the thalamus. However, roles of Wnt signaling in the thalamus during neurogenesis are not well understood. We examined Wnt/beta-catenin activity in embryonic mouse thalamus and found that a Wnt target gene Axin2 and reporter activity of BAT-gal transgenic mice show similar, differential patterns within the thalamic ventricular zone, where ventral and rostral regions had lower activity than other regions. Expression of Wnt ligands and signaling components also showed complex, differential patterns. Finally, based on partially reciprocal patterns of Wnt and Shh signals in the thalamic ventricular zone, we tested if Shh signal is sufficient or necessary for the differential Axin2 expression. Analysis of mice with enhanced or reduced Shh signal showed that Axin2 expression is similar to controls. These results suggest that differential Wnt signaling may play a role in patterning the thalamus independent of Shh signaling.


Asunto(s)
Tálamo/embriología , Tálamo/metabolismo , Proteínas Wnt/fisiología , beta Catenina/fisiología , Animales , Proteína Axina , Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Proliferación Celular , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Modelos Biológicos , Neuronas/metabolismo , Neuronas/fisiología , Transducción de Señal/genética , Células Madre/metabolismo , Células Madre/fisiología , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
12.
J Neurosci ; 29(14): 4484-97, 2009 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-19357274

RESUMEN

The mammalian thalamus is located in the diencephalon and is composed of dozens of morphologically and functionally distinct nuclei. The majority of these nuclei project axons to the neocortex in unique patterns and play critical roles in sensory, motor, and cognitive functions. It has been assumed that the adult thalamus is derived from neural progenitor cells located within the alar plate of the caudal diencephalon. Nevertheless, how a distinct array of postmitotic thalamic nuclei emerge from this single developmental unit has remained largely unknown. Our recent studies found that these thalamic nuclei are in fact derived from molecularly heterogeneous populations of progenitor cells distributed within at least two distinct progenitor domains in the caudal diencephalon. In this study, we investigated how such molecular heterogeneity is established and maintained during early development of the thalamus and how early signaling mechanisms influence the formation of postmitotic thalamic nuclei. By using mouse genetics and in utero electroporation, we provide evidence that Sonic hedgehog (Shh), which is normally expressed in ventral and rostral borders of the embryonic thalamus, plays a crucial role in patterning progenitor domains throughout the thalamus. We also show that increasing or decreasing Shh activity causes dramatic reorganization of postmitotic thalamic nuclei through altering the positional identity of progenitor cells.


Asunto(s)
Proteínas Hedgehog/fisiología , Transducción de Señal/fisiología , Células Madre/citología , Células Madre/fisiología , Tálamo/citología , Tálamo/fisiología , Animales , Femenino , Proteínas Hedgehog/biosíntesis , Proteínas Hedgehog/deficiencia , Proteínas Hedgehog/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Embarazo , Núcleos Talámicos/citología , Núcleos Talámicos/embriología , Núcleos Talámicos/fisiología , Tálamo/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...