Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Nucl Med ; 65(8): 1231-1238, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38991752

RESUMEN

[177Lu]Lu-PSMA is an effective class of therapy for patients with metastatic castration-resistant prostate cancer (mCRPC); however, progression is inevitable. The limited durability of response may be partially explained by the presence of micrometastatic deposits, which are energy-sheltered and receive low absorbed radiation with 177Lu due to the approximately 0.7-mm mean pathlength. 161Tb has abundant emission of Auger and conversion electrons that deposit a higher concentration of radiation over a shorter path, particularly to single tumor cells and micrometastases. 161Tb has shown in vitro and in vivo efficacy superior to that of 177Lu. We aim to demonstrate that [161Tb]Tb-PSMA-I&T will deliver effective radiation to sites of metastatic prostate cancer with an acceptable safety profile. Methods: This single-center, single-arm, phase I/II trial will recruit 30 patients with mCRPC. Key eligibility criteria include a diagnosis of mCRPC with progression after at least one line of taxane chemotherapy (unless medically unsuitable) and androgen receptor pathway inhibitor; prostate-specific membrane antigen-positive disease on [68Ga]Ga-PSMA-11 or [18F]DCFPyL PET/CT (SUVmax ≥ 20); no sites of discordance on [18F]FDG PET/CT; adequate bone marrow, hepatic, and renal function; an Eastern Cooperative Oncology Group performance status of no more than 2, and no prior treatment with another radioisotope. The dose escalation is a 3 + 3 design to establish the safety of 3 prespecified activities of [161Tb]Tb-PSMA-I&T (4.4, 5.5, and 7.4 GBq). The maximum tolerated dose will be defined as the highest activity level at which a dose-limiting toxicity occurs in fewer than 2 of 6 participants. The dose expansion will include 24 participants at the maximum tolerated dose. Up to 6 cycles of [161Tb]Tb-PSMA-I&T will be administered intravenously every 6 wk, with each subsequent activity reduced by 0.4 GBq. The coprimary objectives are to establish the maximum tolerated dose and safety profile (Common Terminology Criteria for Adverse Events version 5.0) of [161Tb]Tb-PSMA-I&T. Secondary objectives include measuring absorbed radiation dose (Gy), evaluating antitumor activity (prostate-specific antigen 50% response rate, radiographic and prostate-specific antigen progression-free survival, overall survival, objective response rate), and evaluating pain (Brief Pain Inventory-Short Form) and health-related quality of life (Functional Assessment of Cancer Therapy-Prostate and Functional Assessment of Cancer Therapy-Radionuclide Therapy). Conclusion: Enrollment was completed in February 2024. Patients are still receiving [161Tb]Tb-PSMA-I&T.


Asunto(s)
Metástasis de la Neoplasia , Neoplasias de la Próstata Resistentes a la Castración , Anciano , Humanos , Masculino , Persona de Mediana Edad , Ligandos , Neoplasias de la Próstata Resistentes a la Castración/radioterapia , Neoplasias de la Próstata Resistentes a la Castración/patología , Radiofármacos/uso terapéutico , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto
2.
Theranostics ; 14(5): 1815-1828, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505611

RESUMEN

Peptides are ideal for theranostic development as they afford rapid target accumulation, fast clearance from background tissue, and exhibit good tissue penetration. Previously, we developed a novel series of peptides that presented discreet folding propensity leading to an optimal candidate [68Ga]Ga-DOTA-GA1 ([D-Glu]6-Ala-Tyr-NMeGly-Trp-NMeNle-Asp-Nal-NH2) with 50 pM binding affinity against cholecystokinin-2 receptors (CCK2R). However, we were confronted with challenges of unfavorably high renal uptake. Methods: A structure activity relationship study was undertaken of the lead theranostic candidate. Prudent structural modifications were made to the peptide scaffold to evaluate the contributions of specific N-terminal residues to the overall biological activity. Optimal candidates were then evaluated in nude mice bearing transfected A431-CCK2 tumors, and their biodistribution was quantitated ex vivo. Results: We identified and confirmed that D-Glu3 to D-Ala3 substitution produced 2 optimal candidates, [68Ga]Ga-DOTA-GA12 and [68Ga]Ga-DOTA-GA13. These radiopeptides presented with high target/background ratios, enhanced tumor retention, excellent metabolic stability in plasma and mice organ homogenates, and a 4-fold reduction in renal uptake, significantly outperforming their non-alanine counterparts. Conclusions: Our study identified novel radiopharmaceutical candidates that target the CCK2R. Their high tumor uptake and reduced renal accumulation warrant clinical translation.


Asunto(s)
Radioisótopos de Galio , Receptor de Colecistoquinina B , Ratones , Animales , Receptor de Colecistoquinina B/metabolismo , Radioisótopos de Galio/química , Medicina de Precisión , Ratones Desnudos , Distribución Tisular , Línea Celular Tumoral , Péptidos/química
3.
Sci Rep ; 13(1): 19741, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957274

RESUMEN

Cancers and autoimmune diseases commonly co-exist and immune checkpoint inhibitor therapy (ICI) exacerbates autoimmune pathologies. We recently described a lipidic peptide, designated IK14004, that promotes expansion of immunosuppressive T regulatory (Treg) cells and uncouples interleukin-2 from interferon-gamma production while activating CD8+ T cells. Herein, we report IK14004-mediated inhibition of Lewis lung cancer (LLC) growth and re-invigoration of splenocyte-derived exhausted CD4+ T cells. In human immune cells from healthy donors, IK14004 modulates expression of the T cell receptor α/ß subunits, induces Type I IFN expression, stimulates natural killer (NK) cells to express NKG2D/NKp44 receptors and enhances K562 cytotoxicity. In both T and NK cells, IK14004 alters the IL-12 receptor ß1/ß2 chain ratio to favour IL-12p70 binding. Taken together, this novel peptide offers an opportunity to gain further insight into the complexity of ICI immunotherapy so that autoimmune responses may be minimised without promoting tumour evasion from the immune system.


Asunto(s)
Enfermedades Autoinmunes , Carcinoma Pulmonar de Lewis , Animales , Humanos , Autoinmunidad , Células Asesinas Naturales , Linfocitos T Reguladores , Enfermedades Autoinmunes/metabolismo , Carcinoma Pulmonar de Lewis/metabolismo
4.
Clin Transl Radiat Oncol ; 43: 100682, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37808452

RESUMEN

Background: The kinetics of circulating tumor DNA (ctDNA) release following commencement of radiotherapy or chemoradiotherapy may reflect early tumour cell killing. We hypothesised that an increase in ctDNA may be observed after the first fraction of radiotherapy and that this could have clinical significance. Materials and methods: ctDNA analysis was performed as part of a prospective, observational clinical biomarker study of non-small cell lung cancer (NSCLC) patients, treated with curative-intent radiotherapy or chemoradiotherapy. Blood was collected at predefined intervals before, during (including 24 h after fraction 1 of radiotherapy) and after radiotherapy/chemoradiotherapy. Mutation-specific droplet digital PCR assays used to track ctDNA levels during and after treatment. Results: Sequential ctDNA results are available for 14 patients with known tumor-based mutations, including in EGFR, KRAS and TP53, with a median follow-up of 723 days (range 152 to 1110). Treatments delivered were fractionated radiotherapy/chemoradiotherapy, in 2-2.75 Gy fractions (n = 12), or stereotactic ablative body radiotherapy (SABR, n = 2). An increase in ctDNA was observed after fraction 1 in 3/12 patients treated with fractionated radiotherapy with a complete set of results, including in 2 cases where ctDNA was initially undetectable. Neither SABR patient had detectable ctDNA immediately before or after radiotherapy, but one of these later relapsed systemically with a high detected ctDNA concentration. Conclusions: A rapid increase in ctDNA levels was observed after one fraction of fractionated radiotherapy in three cases. Further molecular characterization will be required to understand if a "spike" in ctDNA levels could represent rapid initial tumor cell destruction and could have clinical value as a surrogate for early treatment response and/or as a means of enriching ctDNA for mutational profiling.

5.
Theranostics ; 13(14): 4745-4761, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771787

RESUMEN

Peptide receptor radionuclide therapy (PRRT) using 177Lutetium-DOTA-octreotate (LuTate) for neuroendocrine tumours (NET) is now an approved treatment available in many countries, though primary or secondary resistance continue to limit its effectiveness or durability. We hypothesised that a genome-wide CRISPR/Cas9 screen would identify key mediators of response to LuTate and gene targets that might offer opportunities for novel combination therapies for NET patients. Methods: We utilised a genome-wide CRISPR-Cas9 screen in LuTate-treated cells to identify genes that impact on the sensitivity or resistance of cells to LuTate. Hits were validated through single-gene knockout. LuTate-resistant cells were assessed to confirm LuTate uptake and retention, and persistence of somatostatin receptor 2 (SSTR2) expression. Gene knockouts conferring LuTate sensitivity were further characterised by pharmacological sensitisation using specific inhibitors and in vivo analysis of the efficacy of these inhibitors in combination with LuTate. Results: The CRISPR-Cas9 screen identified several potential targets for both resistance and sensitivity to PRRT. Two gene knockouts which conferred LuTate resistance in vitro, ARRB2 and MVP, have potential mechanisms related to LuTate binding and retention, and modulation of DNA-damage repair (DDR) pathways, respectively. The screen showed that sensitivity to LuTate treatment in vitro can be conferred by the loss of a variety of genes involved in DDR pathways, with loss of genes involved in Non-Homologous End-Joining (NHEJ) being the most lethal. Loss of the key NHEJ gene, PRKDC (DNA-PK), either by gene loss or inhibition by two different inhibitors, resulted in significantly reduced cell survival upon exposure of cells to LuTate. In SSTR2-positive xenograft-bearing mice, the combination of nedisertib (a DNA-PK specific inhibitor) and LuTate produced a more robust control of tumour growth and increased survival compared to LuTate alone. Conclusions: DDR pathways are critical for sensing and repairing radiation-induced DNA damage, and our study shows that regulation of DDR pathways may be involved in both resistance and sensitivity to PRRT. Additionally, the use of a DNA-PK inhibitor in combination with LuTate PRRT significantly improves the efficacy of the treatment in pre-clinical models, providing further evidence for the clinical efficacy of this combination.


Asunto(s)
Lutecio , Tumores Neuroendocrinos , Animales , Humanos , Ratones , Sistemas CRISPR-Cas/genética , ADN , Lutecio/metabolismo , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/radioterapia , Octreótido/uso terapéutico , Radioisótopos/uso terapéutico
6.
Cancer Discov ; 13(10): 2228-2247, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37548590

RESUMEN

Therapies that enhance antitumor immunity have altered the natural history of many cancers. Consequently, leveraging nonoverlapping mechanisms to increase immunogenicity of cancer cells remains a priority. Using a novel enzymatic inhibitor of the RNA methyl-transferase METTL3, we demonstrate a global decrease in N6-methyladenosine (m6A) results in double-stranded RNA (dsRNA) formation and a profound cell-intrinsic interferon response. Through unbiased CRISPR screens, we establish dsRNA-sensing and interferon signaling are primary mediators that potentiate T-cell killing of cancer cells following METTL3 inhibition. We show in a range of immunocompetent mouse models that although METTL3 inhibition is equally efficacious to anti-PD-1 therapy, the combination has far greater preclinical activity. Using SPLINTR barcoding, we demonstrate that anti-PD-1 therapy and METTL3 inhibition target distinct malignant clones, and the combination of these therapies overcomes clones insensitive to the single agents. These data provide the mole-cular and preclinical rationale for employing METTL3 inhibitors to promote antitumor immunity in the clinic. SIGNIFICANCE: This work demonstrates that METTL3 inhibition stimulates a cell-intrinsic interferon response through dsRNA formation. This immunomodulatory mechanism is distinct from current immunotherapeutic agents and provides the molecular rationale for combination with anti-PD-1 immune-checkpoint blockade to augment antitumor immunity. This article is featured in Selected Articles from This Issue, p. 2109.


Asunto(s)
Interferones , Metiltransferasas , Animales , Ratones , Interferones/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN Bicatenario
7.
Sci Rep ; 13(1): 11702, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474630

RESUMEN

Ultraviolet radiation (UVR) induces immunosuppression and DNA damage, both of which contribute to the rising global incidence of skin cancer including melanoma. Nucleotide excision repair, which is activated upon UVR-induced DNA damage, is linked to expression of interleukin-12 (IL-12) which serves to limit immunosuppression and augment the DNA repair process. Herein, we report an immunomodulating peptide, designated IK14800, that not only elicits secretion of IL-12, interleukin-2 (IL-2) and interferon-gamma (IFN-γ) but also reduces DNA damage in the skin following exposure to UVR. Combined with re-invigoration of exhausted CD4+ T cells, inhibition of UVR-induced MMP-1 release and suppression of B16F10 melanoma metastases, IK14800 offers an opportunity to gain further insight into mechanisms underlying the development and progression of skin cancers.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Rayos Ultravioleta/efectos adversos , Terapia de Inmunosupresión/efectos adversos , Daño del ADN , Reparación del ADN , Melanoma/etiología , Interleucina-12 , Neoplasias Cutáneas/complicaciones
9.
J Med Chem ; 66(15): 10289-10303, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37493526

RESUMEN

Peptide receptor radionuclide therapy (PRRT) is a promising form of systemic radiation therapy designed to eradicate cancer. Cholecystokinin-2 receptor (CCK2R) is an important molecular target that is highly expressed in a range of cancers. This study describes the synthesis and in vivo characterization of a novel series of 177Lu-labeled peptides ([177Lu]Lu-2b-4b) in comparison with the reference CCK2R-targeting peptide CP04 ([177Lu]Lu-1b). [177Lu]Lu-1b-4b showed high chemical purity (HPLC ≥ 94%), low Log D7.4 (-4.09 to -4.55) with strong binding affinity to CCK2R (KD 0.097-1.61 nM), and relatively high protein binding (55.6-80.2%) and internalization (40-67%). Biodistribution studies of the novel 177Lu-labeled peptides in tumors (AR42J and A431-CCK2R) showed uptake one- to eight-fold greater than the reference compound CP04 at 1, 24, and 48 h. Rapid clearance and high tumor uptake and retention were established for [177Lu]Lu-2b-4b, making these compounds excellent candidates for theranostic applications against CCK2R-expressing tumors.


Asunto(s)
Neoplasias , Receptor de Colecistoquinina B , Receptor de Colecistoquinina B/metabolismo , Medicina de Precisión , Distribución Tisular , Línea Celular Tumoral , Péptidos/química , Neoplasias/tratamiento farmacológico
10.
Methods Mol Biol ; 2691: 31-41, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37355535

RESUMEN

The development of in vivo lung cancer models that faithfully mimic the human disease is a crucial research tool for understanding the molecular mechanisms driving tumorigenesis. Subcutaneous transplantation assays are commonly employed, likely due to their amenability to easily monitor tumor growth and the simplistic nature of the technique to deliver tumor cells. Importantly however, subcutaneous tumors grow in a microenvironment that differs from that resident within the lung. To circumvent this limitation, here we describe the development of an intrapulmonary (iPUL) orthotopic transplantation method that enables the delivery of lung cancer cells, with precision, to the left lung lobe of recipient mice. Critically, this allows for the growth of lung cancer cells within their native microenvironment. The coupling of iPUL transplantation with position emission tomography (PET) imaging permits the serial detection of tumors in vivo and serves as a powerful tool to trace lung tumor growth and dissemination over time in mouse disease models.


Asunto(s)
Neoplasias Pulmonares , Humanos , Ratones , Animales , Línea Celular Tumoral , Neoplasias Pulmonares/patología , Pulmón/patología , Trasplante de Neoplasias , Carcinogénesis , Modelos Animales de Enfermedad , Microambiente Tumoral
11.
Nucl Med Biol ; 120-121: 108351, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37224789

RESUMEN

OBJECTIVES: 89Zr-labelled proteins are gaining importance in clinical research in a variety of diseases. To date, no clinical study has been reported that utilizes an automated approach for radiosynthesis of 89Zr-labelled radiopharmaceuticals. We aim to develop an automated method for the clinical production of 89Zr-labelled proteins and apply this method to Durvalumab, a monoclonal antibody targeting PD-L1 immune-checkpoint protein. PD-L1 expression is poorly understood and can be up-regulated over the course of chemo- and radiotherapy treatment. The ImmunoPET multicentre study aims to examine the dynamics of PD-L1 expression via 89Zr-Durvalumab PET imaging before, during, and after chemoradiotherapy. The developed automated technique will enable reproducible clinical production of [89Zr]Zr-DFOSq-Durvalumab for this study at three different sites. METHODS: Conjugation of Durvalumab to H3DFOSqOEt was optimized for optimal chelator-to-antibody ratio. Automated radiolabelling of H3DFOSq-Durvalumab with zirconium-89 was optimized on the disposable cassette based iPHASE technologies MultiSyn radiosynthesizer using a modified cassette. Activity losses were tracked using a dose calibrator and minimized by optimizing fluid transfers, reaction buffer, antibody formulation additives and pH. The biological profile of the radiolabelled antibody was confirmed in vivo in PD-L1+ (HCC827) and PD-L1- (A549) murine xenografts. Clinical process validation and quality control were performed at three separate study sites to satisfy clinical release criteria. RESULTS: H3DFOSq-Durvalumab with an average CAR of 3.02 was obtained. Radiolabelling kinetics in succinate (20 mM, pH 6) were significantly faster when compared to HEPES (0.5 M, pH 7.2) with >90 % conversion observed after 15 min. Residual radioactivity in the 89Zr isotope vial was reduced from 24 % to 0.44 % ± 0.18 % (n = 7) and losses in the reactor vial were reduced from 36 % ± 6 % (n = 4) to 0.82 % ± 0.75 % (n = 4) by including a surfactant in the reaction and formulation buffers. Overall process yield was 75 % ± 6 % (n = 5) and process time was 40 min. Typically, 165 MBq of [89Zr]Zr-DFOSq-Durvalumab with an apparent specific activity of 315 MBq/mg ± 34 MBq/mg (EOS) was obtained in a volume of 3.0 mL. At end-of-synthesis (EOS), radiochemical purity and protein integrity were always >99 % and >96 %, respectively, and dropped to 98 % and 65 % after incubation in human serum for 7 days at 37 °C. Immunoreactive fraction in HEK293/PD-L1 cells was 83.3 ± 9.0 (EOS). Preclinical in vivo data at 144 h p.i. showed excellent SUVmax in PD-L1+ tumour (8.32 ± 0.59) with a tumour-background ratio of 17.17 ± 3.96. [89Zr]Zr-DFOSq-Durvalumab passed all clinical release criteria at each study site and was deemed suitable for administration in a multicentre imaging trial. CONCLUSION: Fully automated production of [89Zr]Zr-DFOSq-Durvalumab for clinical use was achieved with minimal exposure to the operator. The cassette-based approach allows for consecutive productions on the same day and offers an alternative to currently used manual protocols. The method should be broadly applicable to other proteins and has the potential for clinical impact considering the growing number of clinical trials investigating 89Zr-labelled antibodies.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Humanos , Animales , Ratones , Antígeno B7-H1/metabolismo , Células HEK293 , Anticuerpos Monoclonales , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Circonio
12.
PLoS One ; 18(1): e0280560, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36662808

RESUMEN

Calorie restriction (CR) suppresses not only spontaneous but also chemical- and radiation-induced carcinogenesis. Our previous study revealed that the cancer-preventive effect of CR is tissue dependent and that CR does not effectively prevent the development of thymic lymphoma (TL). We investigated the association between CR and the genomic alterations of resulting TLs to clarify the underlying resistance mechanism. TLs were obtained from previous and new experiments, in which B6C3F1 mice were exposed to radiation at 1 week of age and fed with a CR or standard (non-CR) diet from 7 weeks throughout their lifetimes. All available TLs were used for analysis of genomic DNA. In contrast to the TLs of the non-CR group, those of the CR group displayed suppression of copy-neutral loss of heterozygosity (LOH) involving relevant tumor suppressor genes (Cdkn2a, Ikzf1, Trp53, Pten), an event regarded as cell division-associated. However, CR did not affect interstitial deletions of those genes, which were observed in both groups. In addition, CR affected the mechanism of Ikzf1 inactivation in TLs: the non-CR group exhibited copy-neutral LOH with duplicated inactive alleles, whereas the CR group showed expression of dominant-negative isoforms accompanying a point mutation or an intragenic deletion. These results suggest that, even though CR reduces cell division-related genomic rearrangements by suppressing cell proliferation, tumors arise via diverse carcinogenic pathways including inactivation of tumor suppressors via interstitial deletions and other mutations. These findings provide a molecular basis for improved prevention strategies that overcome the CR resistance of lymphomagenesis.


Asunto(s)
Neoplasias Inducidas por Radiación , Neoplasias del Timo , Ratones , Animales , Restricción Calórica , Mutación , Neoplasias del Timo/genética , Mutación Puntual , Alelos , Pérdida de Heterocigocidad , Neoplasias Inducidas por Radiación/genética
13.
BMJ Open ; 12(11): e056708, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36400733

RESUMEN

BACKGROUND: ImmunoPET is a multicentre, single arm, phase 0-1 study that aims to establish if 89Zr-durvalumab PET/CT can be used to interrogate the expression of PD-L1 in larger, multicentre clinical trials. METHODS: The phase 0 study recruited 5 PD-L1+ patients with metastatic non-small cell lung cancer (NSCLC). Patients received 60MBq/70 kg 89Zr-durva up to a maximum of 74 MBq, with scan acquisition at days 0, 1, 3 or 5±1 day. Data on (1) Percentage of injected 89Zr-durva dose found in organs of interest (2) Absorbed organ doses (µSv/MBq of administered 89Zr-durva) and (3) whole-body dose expressed as mSv/100MBq of administered dose was collected to characterise biodistribution.The phase 1 study will recruit 20 patients undergoing concurrent chemoradiotherapy for stage III NSCLC. Patients will have 89Zr-durva and FDG-PET/CT before, during and after chemoradiation. In order to establish the feasibility of 89Zr-durva PET/CT for larger multicentre trials, we will collect both imaging and toxicity data. Feasibility will be deemed to have been met if more than 80% of patients are able complete all trial requirements with no significant toxicity. ETHICS AND DISSEMINATION: This phase 0 study has ethics approval (HREC/65450/PMCC 20/100) and is registered on the Australian Clinical Trials Network (ACTRN12621000171819). The protocol, technical and clinical data will be disseminated by conference presentations and publications. Any modifications to the protocol will be formally documented by administrative letters and must be submitted to the approving HREC for review and approval. TRIAL REGISTRATION NUMBER: Australian Clinical Trials Network ACTRN12621000171819.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Australia , Antígeno B7-H1 , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Quimioradioterapia , Inmunoterapia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamiento farmacológico , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Distribución Tisular
14.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35745647

RESUMEN

The gastrin-releasing peptide receptor (GRPR) is a promising molecular target for imaging and therapy of prostate cancer using bombesin peptides that bind to the receptor with high affinity. Targeted copper theranostics (TCTs) using copper radionuclides, 64Cu for imaging and 67Cu for therapy, offer significant advantages in the development of next-generation theranostics. [64Cu]Cu-SAR-BBN is in clinical development for PET imaging of GRPR-expressing cancers. This study explores the therapeutic efficacy of [67Cu]Cu-SAR-BBN in a pre-clinical mouse model. The peptide was radiolabeled with 67Cu, and specific binding of the radiolabeled peptide towards GRPR-positive PC-3 prostate cancer cells was confirmed with 52.2 ± 1.4% total bound compared to 5.8 ± 0.1% with blocking. A therapy study with [67Cu]Cu-SAR-BBN was conducted in mice bearing PC-3 tumors by injecting 24 MBq doses a total of six times. Tumor growth was inhibited by 93.3% compared to the control group on day 19, and median survival increased from 34.5 days for the control group to greater than 54 days for the treatment group. The ease and stability of the radiochemistry, favorable biodistribution, and the positive tumor inhibition demonstrate the suitability of this copper-based theranostic agent for clinical assessment in the treatment of cancers expressing GRPR.

15.
J Immunother Cancer ; 10(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35764368

RESUMEN

BACKGROUND: Aberrations in homologous recombination repair (HRR) genes are emerging as important biomarkers for personalized treatment in prostate cancer (PCa). HRR deficiency (HRD) could affect the tumor immune microenvironment (TIME), potentially contributing to differential responses to poly ADP-ribose polymerase (PARP) inhibitors and immune checkpoint inhibitors. Spatial distribution of immune cells in a range of cancers identifies novel disease subtypes and is related to prognosis. In this study we aimed to determine the differences in the TIME of PCa with and without germline (g) HRR mutations. METHODS: We performed gene expression analysis, multiplex immunohistochemistry of T and B cells and quantitative spatial analysis of PCa samples from 36 patients with gHRD and 26 patients with sporadic PCa. Samples were archival tumor tissue from radical prostatectomies with the exception of one biopsy. Results were validated in several independent cohorts. RESULTS: Although the composition of the T cell and B cells was similar in the tumor areas of gHRD-mutated and sporadic tumors, the spatial profiles differed between these cohorts. We describe two T-cell spatial profiles across primary PCa, a clustered immune spatial (CIS) profile characterized by dense clusters of CD4+ T cells closely interacting with PD-L1+ cells, and a free immune spatial (FIS) profile of CD8+ cells in close proximity to tumor cells. gHRD tumors had a more T-cell inflamed microenvironment than sporadic tumors. The CIS profile was mainly observed in sporadic tumors, whereas a FIS profile was enriched in gHRD tumors. A FIS profile was associated with lower Gleason scores, smaller tumors and longer time to biochemical recurrence and metastasis. CONCLUSIONS: gHRD-mutated tumors have a distinct immune microenvironment compared with sporadic tumors. Spatial profiling of T-cells provides additional information beyond T-cell density and is associated with time to biochemical recurrence, time to metastasis, tumor size and Gleason scores.


Asunto(s)
Mutación de Línea Germinal , Neoplasias de la Próstata , Humanos , Inhibidores de Puntos de Control Inmunológico , Masculino , Neoplasias de la Próstata/genética , Reparación del ADN por Recombinación , Microambiente Tumoral/genética
16.
NPJ Precis Oncol ; 6(1): 24, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35393508

RESUMEN

Immune checkpoint inhibitors and related molecules can achieve tumour regression, and even prolonged survival, for a subset of cancer patients with an otherwise dire prognosis. However, it remains unclear why some patients respond to immunotherapy and others do not. PET imaging has the potential to characterise the spatial and temporal heterogeneity of both immunotherapy target molecules and the tumor immune microenvironment, suggesting a tantalising vision of personally-adapted immunomodulatory treatment regimens. Personalised combinations of immunotherapy with local therapies and other systemic therapies, would be informed by immune imaging and subsequently modified in accordance with therapeutically induced immune environmental changes. An ideal PET imaging biomarker would facilitate the choice of initial therapy and would permit sequential imaging in time-frames that could provide actionable information to guide subsequent therapy. Such imaging should provide either prognostic or predictive measures of responsiveness relevant to key immunotherapy types but, most importantly, guide key decisions on initiation, continuation, change or cessation of treatment to reduce the cost and morbidity of treatment while enhancing survival outcomes. We survey the current literature, focusing on clinically relevant immune checkpoint immunotherapies, for which novel PET tracers are being developed, and discuss what steps are needed to make this vision a reality.

17.
Biology (Basel) ; 11(3)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35336821

RESUMEN

The risk of radiation-induced carcinogenesis depends on age at exposure. We previously reported principal causative genes in lymphomas arising after infant or adult exposure to 4-fractionated irradiation as Pten or Ikzf1, respectively, suggesting that cells with mutation in these genes might be the origin of lymphomas arising after irradiation depending on age at exposure. Here, we clarified the age-dependent differences in thymus-cell dynamics in mice during the initial post-irradiation period. The thymocyte number initially decreased, followed by two regeneration phases. During the first regeneration, the proportion of phosphorylated-AKT-positive (p-AKT+) cells in cell-cycle phases S+G2/M of immature CD4-CD8- and CD4+CD8+ thymocytes and in phases G0/G1 of mature CD4+CD8- and CD4-CD8+ thymocytes was significantly greater in irradiated infants than in irradiated adults. During the second regeneration, the proportion of p-AKT+ thymocytes in phases G0/G1 increased in each of the three populations other than CD4-CD8- thymocytes more so than during the first regeneration. Finally, PI3K-AKT-mTOR signaling in infants contributed, at least in part, to biphasic thymic regeneration through the modification of cell proliferation and survival after irradiation, which may be associated with the risk of Pten mutation-associated thymic lymphoma.

18.
Front Oncol ; 11: 580806, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34026597

RESUMEN

BACKGROUND: Muscle wasting (Sarcopenia) is associated with poor outcomes in cancer patients. Early identification of sarcopenia can facilitate nutritional and exercise intervention. Cross-sectional skeletal muscle (SM) area at the third lumbar vertebra (L3) slice of a computed tomography (CT) image is increasingly used to assess body composition and calculate SM index (SMI), a validated surrogate marker for sarcopenia in cancer. Manual segmentation of SM requires multiple steps, which limits use in routine clinical practice. This project aims to develop an automatic method to segment L3 muscle in CT scans. METHODS: Attenuation correction CTs from full body PET-CT scans from patients enrolled in two prospective trials were used. The training set consisted of 66 non-small cell lung cancer (NSCLC) patients who underwent curative intent radiotherapy. An additional 42 NSCLC patients prescribed curative intent chemo-radiotherapy from a second trial were used for testing. Each patient had multiple CT scans taken at different time points prior to and post- treatment (147 CTs in the training and validation set and 116 CTs in the independent testing set). Skeletal muscle at L3 vertebra was manually segmented by two observers, according to the Alberta protocol to serve as ground truth labels. This included 40 images segmented by both observers to measure inter-observer variation. An ensemble of 2.5D fully convolutional neural networks (U-Nets) was used to perform the segmentation. The final layer of U-Net produced the binary classification of the pixels into muscle and non-muscle area. The model performance was calculated using Dice score and absolute percentage error (APE) in skeletal muscle area between manual and automated contours. RESULTS: We trained five 2.5D U-Nets using 5-fold cross validation and used them to predict the contours in the testing set. The model achieved a mean Dice score of 0.92 and an APE of 3.1% on the independent testing set. This was similar to inter-observer variation of 0.96 and 2.9% for mean Dice and APE respectively. We further quantified the performance of sarcopenia classification using computer generated skeletal muscle area. To meet a clinical diagnosis of sarcopenia based on Alberta protocol the model achieved a sensitivity of 84% and a specificity of 95%. CONCLUSIONS: This work demonstrates an automated method for accurate and reproducible segmentation of skeletal muscle area at L3. This is an efficient tool for large scale or routine computation of skeletal muscle area in cancer patients which may have applications on low quality CTs acquired as part of PET/CT studies for staging and surveillance of patients with cancer.

19.
Cell ; 184(12): 3143-3162.e32, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34004147

RESUMEN

Gene expression by RNA polymerase II (RNAPII) is tightly controlled by cyclin-dependent kinases (CDKs) at discrete checkpoints during the transcription cycle. The pausing checkpoint following transcription initiation is primarily controlled by CDK9. We discovered that CDK9-mediated, RNAPII-driven transcription is functionally opposed by a protein phosphatase 2A (PP2A) complex that is recruited to transcription sites by the Integrator complex subunit INTS6. PP2A dynamically antagonizes phosphorylation of key CDK9 substrates including DSIF and RNAPII-CTD. Loss of INTS6 results in resistance to tumor cell death mediated by CDK9 inhibition, decreased turnover of CDK9 phospho-substrates, and amplification of acute oncogenic transcriptional responses. Pharmacological PP2A activation synergizes with CDK9 inhibition to kill both leukemic and solid tumor cells, providing therapeutic benefit in vivo. These data demonstrate that fine control of gene expression relies on the balance between kinase and phosphatase activity throughout the transcription cycle, a process dysregulated in cancer that can be exploited therapeutically.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/metabolismo , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteína Fosfatasa 2/metabolismo , Proteínas de Unión al ARN/metabolismo , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo , Animales , Línea Celular Tumoral , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Endogámicos NOD , Fosforilación , Unión Proteica , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Especificidad por Sustrato
20.
J Med Chem ; 64(8): 4841-4856, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33826325

RESUMEN

Proteins adopt unique folded secondary and tertiary structures that are responsible for their remarkable biological properties. This structural complexity is key in designing efficacious peptides that can mimic the three-dimensional structure needed for biological function. In this study, we employ different chemical strategies to induce and stabilize a ß-hairpin fold of peptides targeting cholecystokinin-2 receptors for theranostic application (combination of a targeted therapeutic and a diagnostic companion). The newly developed peptides exhibited enhanced folding capacity as demonstrated by circular dichroism (CD) spectroscopy, ion-mobility spectrometry-mass spectrometry, and two-dimensional (2D) NMR experiments. Enhanced folding characteristics of the peptides led to increased biological potency, affording four optimal Ga-68 labeled radiotracers ([68Ga]Ga-4b, [68Ga]Ga-11b-13b) targeting CCK-2R. In particular, [68Ga]Ga-12b and [68Ga]Ga-13b presented improved metabolic stability, enhanced cell internalization, and up to 6 fold increase in tumor uptake. These peptides hold great promise as next-generation theranostic radiopharmaceuticals.


Asunto(s)
Neoplasias/diagnóstico , Péptidos/química , Radiofármacos/química , Receptor de Colecistoquinina B/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Radioisótopos de Galio/química , Humanos , Ratones , Ratones Desnudos , Neoplasias/patología , Péptidos/síntesis química , Péptidos/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Medicina de Precisión , Unión Proteica , Estructura Terciaria de Proteína , Radiofármacos/metabolismo , Receptor de Colecistoquinina B/química , Distribución Tisular , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...