Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Brief Bioinform ; 24(4)2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37328705

RESUMEN

Binding free energy calculation of a ligand to a protein receptor is a fundamental objective in drug discovery. Molecular mechanics/Generalized-Born (Poisson-Boltzmann) surface area (MM/GB(PB)SA) is one of the most popular methods for binding free energy calculations. It is more accurate than most scoring functions and more computationally efficient than alchemical free energy methods. Several open-source tools for performing MM/GB(PB)SA calculations have been developed, but they have limitations and high entry barriers to users. Here, we introduce Uni-GBSA, a user-friendly automatic workflow to perform MM/GB(PB)SA calculations, which can perform topology preparation, structure optimization, binding free energy calculation and parameter scanning for MM/GB(PB)SA calculations. It also offers a batch mode that evaluates thousands of molecules against one protein target in parallel for efficient application in virtual screening. The default parameters are selected after systematic testing on the PDBBind-2011 refined dataset. In our case studies, Uni-GBSA produced a satisfactory correlation with the experimental binding affinities and outperformed AutoDock Vina in molecular enrichment. Uni-GBSA is available as an open-source package at https://github.com/dptech-corp/Uni-GBSA. It can also be accessed for virtual screening from the Hermite web platform at https://hermite.dp.tech. A free Uni-GBSA web server of a lab version is available at https://labs.dp.tech/projects/uni-gbsa/. This increases user-friendliness because the web server frees users from package installations and provides users with validated workflows for input data and parameter settings, cloud computing resources for efficient job completions, a user-friendly interface and professional support and maintenance.


Asunto(s)
Descubrimiento de Drogas , Simulación de Dinámica Molecular , Flujo de Trabajo , Entropía , Ligandos , Internet , Unión Proteica
2.
J Chem Theory Comput ; 19(11): 3336-3345, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37125970

RESUMEN

Molecular docking, a structure-based virtual screening method, is a reliable tool to enrich potential bioactive molecules from molecular databases. With the rapid expansion of compound library sizes, the speed of existing molecular docking programs becomes less than adequate to meet the demand for screening ultralarge libraries containing tens of millions or billions of molecules. Here, we propose Uni-Dock, a GPU-accelerated molecular docking program that supports various scoring functions including vina, vinardo, and ad4. Uni-Dock achieves more than 1000-fold speedup with high accuracy compared with the AutoDock Vina running in single CPU core, outperforming reported GPU-accelerated docking programs including AutoDock-GPU and Vina-GPU based on head-to-head experiments. Uni-Dock docks molecules in batches simultaneously using concurrent threads of each molecule. The data flow between GPU and CPU is optimized to eliminate CPU hotspots and maximize GPU utility. Additionally, Uni-Dock also supports hydrogen bond biased docking for all scoring functions and can be migrated to multiple GPUs of different architectures and manufacturers. We analyzed the improved performance of Uni-Dock on the CASF-2016 and DUD-E datasets and recommend three combinations of hyperparameters corresponding to different docking scenarios. To demonstrate Uni-Dock's capability on routinely screening ultralarge libraries, we performed hierarchical virtual screening experiments with Uni-Dock on the Enamine Diverse REAL druglike set containing 38.2 million molecules to a popular target KRAS G12D in 12 h using 100 NVIDIA V100 GPUs. To the best of our knowledge, Uni-Dock should be the fastest GPU-accelerated docking program to date.


Asunto(s)
Algoritmos , Programas Informáticos , Simulación del Acoplamiento Molecular , Ligandos , Bases de Datos de Compuestos Químicos
3.
Angew Chem Int Ed Engl ; 62(21): e202300890, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36930533

RESUMEN

We previously reported a molecular hopper, which makes sub-nanometer steps by thiol-disulfide interchange along a track with cysteine footholds within a protein nanopore. Here we optimize the hopping rate (ca. 0.1 s-1 in the previous work) with a view towards rapid enzymeless biopolymer characterization during translocation within nanopores. We first took a single-molecule approach to obtain the reactivity profiles of individual footholds. The pKa values of cysteine thiols within a pore ranged from 9.17 to 9.85, and the pH-independent rate constants of the thiolates with a small-molecule disulfide varied by up to 20-fold. Through site-specific mutagenesis and a pH increase from 8.5 to 9.5, the overall hopping rate of a DNA cargo along a five-cysteine track was accelerated 4-fold, and the rate-limiting step 21-fold.


Asunto(s)
Cisteína , Nanoporos , Cisteína/química , Compuestos de Sulfhidrilo/química , Disulfuros/química
4.
Angew Chem Weinheim Bergstr Ger ; 135(21): e202300890, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38529338

RESUMEN

We previously reported a molecular hopper, which makes sub-nanometer steps by thiol-disulfide interchange along a track with cysteine footholds within a protein nanopore. Here we optimize the hopping rate (ca. 0.1 s-1 in the previous work) with a view towards rapid enzymeless biopolymer characterization during translocation within nanopores. We first took a single-molecule approach to obtain the reactivity profiles of individual footholds. The pK a values of cysteine thiols within a pore ranged from 9.17 to 9.85, and the pH-independent rate constants of the thiolates with a small-molecule disulfide varied by up to 20-fold. Through site-specific mutagenesis and a pH increase from 8.5 to 9.5, the overall hopping rate of a DNA cargo along a five-cysteine track was accelerated 4-fold, and the rate-limiting step 21-fold.

5.
Org Biomol Chem ; 19(41): 9058-9067, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34617944

RESUMEN

Photo-responsive synthetic ion transporters are of interest as tools for studying transmembrane transport processes and have potential applications as targeted therapeutics, due to the possibility of spatiotemporal control and wavelength-dependent function. Here we report the synthesis of novel symmetric and non-symmetric red-shifted tetra-ortho-chloro- and tetra-ortho-fluoro azobenzenes, bearing pendant amine functionality. Functionalisation of the photo-switchable scaffolds with squaramide hydrogen bond donors enabled the preparation of a family of anion receptors, which act as photo-regulated transmembrane chloride transporters in response to green or red light. The subtle effects of chlorine/fluorine substitution, meta/para positioning of the anion receptors, and the use of more flexible linkers are explored. NMR titration experiments on the structurally diverse photo-switchable receptors reveal cooperative binding of chloride in the Z, but not E isomer, by the two squaramide binding sites. These results are supported by molecular dynamics simulations in explicit solvent and model membranes. We show that this intramolecular anion recognition leads to effective switching of transport activity in lipid bilayer membranes, in which optimal Z isomer activity is achieved using a combination of fluorine substitution and para-methylene spacer units.


Asunto(s)
Compuestos Azo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...