Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Immunohorizons ; 8(8): 586-597, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39186692

RESUMEN

Neutrophil extracellular traps (NETs) function to control infectious agents as well as to propagate inflammatory response in a variety of disease conditions. DNA damage associated with chromatin decondensation and NACHT domain-leucine-rich repeat-and pyrin domain-containing protein 3 (NLRP3) inflammasome activation have emerged as crucial events in NET formation, but the link between the two processes is unknown. In this study, we demonstrate that poly(ADP-ribose) polymerase-1 (PARP-1), a key DNA repair enzyme, regulates NET formation triggered by NLRP3 inflammasome activation in neutrophils. Activation of mouse neutrophils with canonical NLRP3 stimulants LPS and nigericin induced NET formation, which was significantly abrogated by pharmacological inhibition of PARP-1. We found that PARP-1 is required for NLRP3 inflammasome assembly by regulating post-transcriptional levels of NLRP3 and ASC dimerization. Importantly, this PARP-1-regulated NLRP3 activation for NET formation was independent of inflammasome-mediated pyroptosis, because caspase-1 and gasdermin D processing as well as IL-1ß transcription and secretion remained intact upon PARP-1 inhibition in neutrophils. Accordingly, pharmacological inhibition or genetic ablation of caspase-1 and gasdermin D had no effect on NLRP3-mediated NET formation. Mechanistically, PARP-1 inhibition increased p38 MAPK activity, which was required for downmodulation of NLRP3 and NETs, because concomitant inhibition of p38 MAPK with PARP-1 restored NLRP3 activation and NET formation. Finally, mice undergoing bacterial peritonitis exhibited increased survival upon treatment with PARP-1 inhibitor, which correlated with increased leukocyte influx and improved intracellular bacterial clearance. Our findings reveal a noncanonical pyroptosis-independent role of NLRP3 in NET formation regulated by PARP-1 via p38 MAPK, which can be targeted to control NETosis in inflammatory diseases.


Asunto(s)
Trampas Extracelulares , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Neutrófilos , Poli(ADP-Ribosa) Polimerasa-1 , Piroptosis , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Trampas Extracelulares/metabolismo , Ratones , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inflamasomas/metabolismo , Neutrófilos/metabolismo , Neutrófilos/inmunología , Ratones Endogámicos C57BL , Nigericina/farmacología , Ratones Noqueados , Peritonitis/metabolismo , Peritonitis/inmunología , Lipopolisacáridos/farmacología , Caspasa 1/metabolismo
2.
Life Sci Alliance ; 7(10)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39043420

RESUMEN

Folate is a vitamin required for cell growth and is present in fortified foods in the form of folic acid to prevent congenital abnormalities. The impact of low-folate status on life-long health is poorly understood. We found that limiting folate levels with the folate antagonist methotrexate increased the lifespan of yeast and worms. We then restricted folate intake in aged mice and measured various health metrics, metabolites, and gene expression signatures. Limiting folate intake decreased anabolic biosynthetic processes in mice and enhanced metabolic plasticity. Despite reduced serum folate levels in mice with limited folic acid intake, these animals maintained their weight and adiposity late in life, and we did not observe adverse health outcomes. These results argue that the effectiveness of folate dietary interventions may vary depending on an individual's age and sex. A higher folate intake is advantageous during the early stages of life to support cell divisions needed for proper development. However, a lower folate intake later in life may result in healthier aging.


Asunto(s)
Ácido Fólico , Longevidad , Animales , Ácido Fólico/administración & dosificación , Ácido Fólico/metabolismo , Ratones , Masculino , Femenino , Envejecimiento/metabolismo , Dieta/métodos , Ratones Endogámicos C57BL , Metotrexato/farmacología , Deficiencia de Ácido Fólico/metabolismo , Caenorhabditis elegans , Saccharomyces cerevisiae/metabolismo
3.
bioRxiv ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38260683

RESUMEN

Folate is a vitamin required for cell growth and is present in fortified foods in the form of folic acid to prevent congenital abnormalities. The impact of low folate status on life-long health is poorly understood. We found that limiting folate levels with the folate antagonist methotrexate increased the lifespan of yeast and worms. We then restricted folate intake in aged mice and measured various health metrics, metabolites, and gene expression signatures. Limiting folate intake decreased anabolic biosynthetic processes in mice and enhanced metabolic plasticity. Despite reduced serum folate levels in mice with limited folic acid intake, these animals maintained their weight and adiposity late in life, and we did not observe adverse health outcomes. These results argue that the effectiveness of folate dietary interventions may vary depending on an individual's age and sex. A higher folate intake is advantageous during the early stages of life to support cell divisions needed for proper development. However, a lower folate intake later in life may result in healthier aging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...