Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Cancers (Basel) ; 15(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37444398

RESUMEN

BACKGROUND: Genomic profiling cannot solely predict the complexity of how tumor cells behave in their in vivo microenvironment and their susceptibility to therapies. The aim of the study was to establish a functional drug prediction model utilizing patient-derived GBM tumor samples for in vitro testing of drug efficacy followed by in vivo validation to overcome the disadvantages of a strict pharmacogenomics approach. METHODS: High-throughput in vitro pharmacologic testing of patient-derived GBM tumors cultured as 3D organoids offered a cost-effective, clinically and phenotypically relevant model, inclusive of tumor plasticity and stroma. RNAseq analysis supplemented this 128-compound screening to predict more efficacious and patient-specific drug combinations with additional tumor stemness evaluated using flow cytometry. In vivo PDX mouse models rapidly validated (50 days) and determined mutational influence alongside of drug efficacy. We present a representative GBM case of three tumors resected at initial presentation, at first recurrence without any treatment, and at a second recurrence following radiation and chemotherapy, all from the same patient. RESULTS: Molecular and in vitro screening helped identify effective drug targets against several pathways as well as synergistic drug combinations of cobimetinib and vemurafenib for this patient, supported in part by in vivo tumor growth assessment. Each tumor iteration showed significantly varying stemness and drug resistance. CONCLUSIONS: Our integrative model utilizing molecular, in vitro, and in vivo approaches provides direct evidence of a patient's tumor response drifting with treatment and time, as demonstrated by dynamic changes in their tumor profile, which may affect how one would address that drift pharmacologically.

2.
Cancer Res Commun ; 2(7): 590-601, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35832288

RESUMEN

Inflammation is a cancer hallmark. Nonsteroidal anti-inflammatory drugs (NSAIDs) improve overall survival (OS) in certain cancers. Real-world studies explored here if NSAIDs improve non-small cell lung cancer (NSCLC) OS. Analyses independently interrogated clinical databases from The University of Texas MD Anderson Cancer Center (MDACC cohort, 1987 to 2015; 33,162 NSCLCs and 3,033 NSAID users) and Georgetown-MedStar health system (Georgetown cohort, 2000 to 2019; 4,497 NSCLCs and 1,993 NSAID users). Structured and unstructured clinical data were extracted from electronic health records (EHRs) using natural language processing (NLP). Associations were made between NSAID use and NSCLC prognostic features (tobacco use, gender, race, and body mass index, BMI). NSAIDs were statistically-significantly (P < 0.0001) associated with increased NSCLC survival (5-year OS 29.7% for NSAID users versus 13.1% for non-users) in the MDACC cohort. NSAID users gained 11.6 months over nonusers in 5-year restricted mean survival time. Stratified analysis by stage, histopathology and multicovariable assessment substantiated benefits. NSAID users were pooled independent of NSAID type and by NSAID type. Landmark analysis excluded immortal time bias. Survival improvements (P < 0.0001) were confirmed in the Georgetown cohort. Thus, real-world NSAID usage was independently associated with increased NSCLC survival in the MDACC and Georgetown cohorts. Findings were confirmed by landmark analyses and NSAID type. The OS benefits persisted despite tobacco use and did not depend on gender, race, or BMI (MDACC cohort, P < 0.0001). These real-world findings could guide future NSAID lung cancer randomized trials.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Antiinflamatorios no Esteroideos/uso terapéutico , Inflamación , Pronóstico
4.
BMC Res Notes ; 15(1): 19, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033196

RESUMEN

OBJECTIVE: Life expectancy can be estimated accurately from a cohort of individuals born in the same year and followed from birth to death. However, due to the resource-consuming nature of following a cohort prospectively, life expectancy is often assessed based upon retrospective death record reviews. This conventional approach may lead to potentially biased estimates, in particular when estimating life expectancy of rare diseases such as Morquio syndrome A. We investigated the accuracy of life expectancy estimation using death records by simulating the survival of individuals with Morquio syndrome A under four different scenarios. RESULTS: When life expectancy was constant during the entire period, using death data did not result in a biased estimate. However, when life expectancy increased over time, as is often expected to be the case in rare diseases, using only death data led to a substantial underestimation of life expectancy. We emphasize that it is therefore crucial to understand how estimates of life expectancy are obtained, to interpret them in an appropriate context, and to assess estimation methods within a sensitivity analysis framework, similar to the simulations performed herein.


Asunto(s)
Mucopolisacaridosis IV , Sesgo , Estudios de Cohortes , Humanos , Esperanza de Vida , Estudios Retrospectivos
6.
mSystems ; 6(6): e0023321, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34726496

RESUMEN

After emerging in China in late 2019, the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread worldwide, and as of mid-2021, it remains a significant threat globally. Only a few coronaviruses are known to infect humans, and only two cause infections similar in severity to SARS-CoV-2: Severe acute respiratory syndrome-related coronavirus, a species closely related to SARS-CoV-2 that emerged in 2002, and Middle East respiratory syndrome-related coronavirus, which emerged in 2012. Unlike the current pandemic, previous epidemics were controlled rapidly through public health measures, but the body of research investigating severe acute respiratory syndrome and Middle East respiratory syndrome has proven valuable for identifying approaches to treating and preventing novel coronavirus disease 2019 (COVID-19). Building on this research, the medical and scientific communities have responded rapidly to the COVID-19 crisis and identified many candidate therapeutics. The approaches used to identify candidates fall into four main categories: adaptation of clinical approaches to diseases with related pathologies, adaptation based on virological properties, adaptation based on host response, and data-driven identification (ID) of candidates based on physical properties or on pharmacological compendia. To date, a small number of therapeutics have already been authorized by regulatory agencies such as the Food and Drug Administration (FDA), while most remain under investigation. The scale of the COVID-19 crisis offers a rare opportunity to collect data on the effects of candidate therapeutics. This information provides insight not only into the management of coronavirus diseases but also into the relative success of different approaches to identifying candidate therapeutics against an emerging disease. IMPORTANCE The COVID-19 pandemic is a rapidly evolving crisis. With the worldwide scientific community shifting focus onto the SARS-CoV-2 virus and COVID-19, a large number of possible pharmaceutical approaches for treatment and prevention have been proposed. What was known about each of these potential interventions evolved rapidly throughout 2020 and 2021. This fast-paced area of research provides important insight into how the ongoing pandemic can be managed and also demonstrates the power of interdisciplinary collaboration to rapidly understand a virus and match its characteristics with existing or novel pharmaceuticals. As illustrated by the continued threat of viral epidemics during the current millennium, a rapid and strategic response to emerging viral threats can save lives. In this review, we explore how different modes of identifying candidate therapeutics have borne out during COVID-19.

7.
mSystems ; 6(5): e0009521, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34698547

RESUMEN

The novel coronavirus SARS-CoV-2, which emerged in late 2019, has since spread around the world and infected hundreds of millions of people with coronavirus disease 2019 (COVID-19). While this viral species was unknown prior to January 2020, its similarity to other coronaviruses that infect humans has allowed for rapid insight into the mechanisms that it uses to infect human hosts, as well as the ways in which the human immune system can respond. Here, we contextualize SARS-CoV-2 among other coronaviruses and identify what is known and what can be inferred about its behavior once inside a human host. Because the genomic content of coronaviruses, which specifies the virus's structure, is highly conserved, early genomic analysis provided a significant head start in predicting viral pathogenesis and in understanding potential differences among variants. The pathogenesis of the virus offers insights into symptomatology, transmission, and individual susceptibility. Additionally, prior research into interactions between the human immune system and coronaviruses has identified how these viruses can evade the immune system's protective mechanisms. We also explore systems-level research into the regulatory and proteomic effects of SARS-CoV-2 infection and the immune response. Understanding the structure and behavior of the virus serves to contextualize the many facets of the COVID-19 pandemic and can influence efforts to control the virus and treat the disease. IMPORTANCE COVID-19 involves a number of organ systems and can present with a wide range of symptoms. From how the virus infects cells to how it spreads between people, the available research suggests that these patterns are very similar to those seen in the closely related viruses SARS-CoV-1 and possibly Middle East respiratory syndrome-related CoV (MERS-CoV). Understanding the pathogenesis of the SARS-CoV-2 virus also contextualizes how the different biological systems affected by COVID-19 connect. Exploring the structure, phylogeny, and pathogenesis of the virus therefore helps to guide interpretation of the broader impacts of the virus on the human body and on human populations. For this reason, an in-depth exploration of viral mechanisms is critical to a robust understanding of SARS-CoV-2 and, potentially, future emergent human CoVs (HCoVs).

8.
ArXiv ; 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34545336

RESUMEN

The COVID-19 pandemic catalyzed the rapid dissemination of papers and preprints investigating the disease and its associated virus, SARS-CoV-2. The multifaceted nature of COVID-19 demands a multidisciplinary approach, but the urgency of the crisis combined with the need for social distancing measures present unique challenges to collaborative science. We applied a massive online open publishing approach to this problem using Manubot. Through GitHub, collaborators summarized and critiqued COVID-19 literature, creating a review manuscript. Manubot automatically compiled citation information for referenced preprints, journal publications, websites, and clinical trials. Continuous integration workflows retrieved up-to-date data from online sources nightly, regenerating some of the manuscript's figures and statistics. Manubot rendered the manuscript into PDF, HTML, LaTeX, and DOCX outputs, immediately updating the version available online upon the integration of new content. Through this effort, we organized over 50 scientists from a range of backgrounds who evaluated over 1,500 sources and developed seven literature reviews. While many efforts from the computational community have focused on mining COVID-19 literature, our project illustrates the power of open publishing to organize both technical and non-technical scientists to aggregate and disseminate information in response to an evolving crisis.

9.
J Neurosci ; 41(18): 4036-4059, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33731450

RESUMEN

We have previously established that PV+ neurons and Npas1+ neurons are distinct neuron classes in the external globus pallidus (GPe): they have different topographical, electrophysiological, circuit, and functional properties. Aside from Foxp2+ neurons, which are a unique subclass within the Npas1+ class, we lack driver lines that effectively capture other GPe neuron subclasses. In this study, we examined the utility of Kcng4-Cre, Npr3-Cre, and Npy2r-Cre mouse lines (both males and females) for the delineation of GPe neuron subtypes. By using these novel driver lines, we have provided the most exhaustive investigation of electrophysiological studies of GPe neuron subtypes to date. Corroborating our prior studies, GPe neurons can be divided into two statistically distinct clusters that map onto PV+ and Npas1+ classes. By combining optogenetics and machine learning-based tracking, we showed that optogenetic perturbation of GPe neuron subtypes generated unique behavioral structures. Our findings further highlighted the dissociable roles of GPe neurons in regulating movement and anxiety-like behavior. We concluded that Npr3+ neurons and Kcng4+ neurons are distinct subclasses of Npas1+ neurons and PV+ neurons, respectively. Finally, by examining local collateral connectivity, we inferred the circuit mechanisms involved in the motor patterns observed with optogenetic perturbations. In summary, by identifying mouse lines that allow for manipulations of GPe neuron subtypes, we created new opportunities for interrogations of cellular and circuit substrates that can be important for motor function and dysfunction.SIGNIFICANCE STATEMENT Within the basal ganglia, the external globus pallidus (GPe) has long been recognized for its involvement in motor control. However, we lacked an understanding of precisely how movement is controlled at the GPe level as a result of its cellular complexity. In this study, by using transgenic and cell-specific approaches, we showed that genetically-defined GPe neuron subtypes have distinct roles in regulating motor patterns. In addition, the in vivo contributions of these neuron subtypes are in part shaped by the local, inhibitory connections within the GPe. In sum, we have established the foundation for future investigations of motor function and disease pathophysiology.


Asunto(s)
Globo Pálido/citología , Globo Pálido/fisiología , Actividad Motora/fisiología , Neuronas/fisiología , Animales , Ansiedad/psicología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Conducta Animal , Fenómenos Biomecánicos , Fenómenos Electrofisiológicos , Femenino , Aprendizaje Automático , Masculino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/citología , Red Nerviosa/fisiología , Proteínas del Tejido Nervioso/genética , Optogenética , Canales de Potasio con Entrada de Voltaje/genética , Receptores del Factor Natriurético Atrial/genética
10.
ArXiv ; 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33688554

RESUMEN

After emerging in China in late 2019, the novel coronavirus SARS-CoV-2 spread worldwide and as of mid-2021 remains a significant threat globally. Only a few coronaviruses are known to infect humans, and only two cause infections similar in severity to SARS-CoV-2: Severe acute respiratory syndrome-related coronavirus, a closely related species of SARS-CoV-2 that emerged in 2002, and Middle East respiratory syndrome-related coronavirus, which emerged in 2012. Unlike the current pandemic, previous epidemics were controlled rapidly through public health measures, but the body of research investigating severe acute respiratory syndrome and Middle East respiratory syndrome has proven valuable for identifying approaches to treating and preventing novel coronavirus disease 2019 (COVID-19). Building on this research, the medical and scientific communities have responded rapidly to the COVID-19 crisis to identify many candidate therapeutics. The approaches used to identify candidates fall into four main categories: adaptation of clinical approaches to diseases with related pathologies, adaptation based on virological properties, adaptation based on host response, and data-driven identification of candidates based on physical properties or on pharmacological compendia. To date, a small number of therapeutics have already been authorized by regulatory agencies such as the Food and Drug Administration (FDA), while most remain under investigation. The scale of the COVID-19 crisis offers a rare opportunity to collect data on the effects of candidate therapeutics. This information provides insight not only into the management of coronavirus diseases, but also into the relative success of different approaches to identifying candidate therapeutics against an emerging disease.

11.
ArXiv ; 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33594340

RESUMEN

The novel coronavirus SARS-CoV-2, which emerged in late 2019, has since spread around the world and infected hundreds of millions of people with coronavirus disease 2019 (COVID-19). While this viral species was unknown prior to January 2020, its similarity to other coronaviruses that infect humans has allowed for rapid insight into the mechanisms that it uses to infect human hosts, as well as the ways in which the human immune system can respond. Here, we contextualize SARS-CoV-2 among other coronaviruses and identify what is known and what can be inferred about its behavior once inside a human host. Because the genomic content of coronaviruses, which specifies the virus's structure, is highly conserved, early genomic analysis provided a significant head start in predicting viral pathogenesis and in understanding potential differences among variants. The pathogenesis of the virus offers insights into symptomatology, transmission, and individual susceptibility. Additionally, prior research into interactions between the human immune system and coronaviruses has identified how these viruses can evade the immune system's protective mechanisms. We also explore systems-level research into the regulatory and proteomic effects of SARS-CoV-2 infection and the immune response. Understanding the structure and behavior of the virus serves to contextualize the many facets of the COVID-19 pandemic and can influence efforts to control the virus and treat the disease.

12.
CEUR Workshop Proc ; 2976: 29-38, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35558551

RESUMEN

The COVID-19 pandemic catalyzed the rapid dissemination of papers and preprints investigating the disease and its associated virus, SARS-CoV-2. The multifaceted nature of COVID-19 demands a multidisciplinary approach, but the urgency of the crisis combined with the need for social distancing measures present unique challenges to collaborative science. We applied a massive online open publishing approach to this problem using Manubot. Through GitHub, collaborators summarized and critiqued COVID-19 literature, creating a review manuscript. Manubot automatically compiled citation information for referenced preprints, journal publications, websites, and clinical trials. Continuous integration workflows retrieved up-to-date data from online sources nightly, regenerating some of the manuscript's figures and statistics. Manubot rendered the manuscript into PDF, HTML, LaTeX, and DOCX outputs, immediately updating the version available online upon the integration of new content. Through this effort, we organized over 50 scientists from a range of backgrounds who evaluated over 1,500 sources and developed seven literature reviews. While many efforts from the computational community have focused on mining COVID-19 literature, our project illustrates the power of open publishing to organize both technical and non-technical scientists to aggregate and disseminate information in response to an evolving crisis.

13.
J Math Biol ; 81(6-7): 1217-1250, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33034736

RESUMEN

In this study, we consider admixed populations through their expected heterozygosity, a measure of genetic diversity. A population is termed admixed if its members possess recent ancestry from two or more separate sources. As a result of the fusion of source populations with different genetic variants, admixed populations can exhibit high levels of genetic diversity, reflecting contributions of their multiple ancestral groups. For a model of an admixed population derived from K source populations, we obtain a relationship between its heterozygosity and its proportions of admixture from the various source populations. We show that the heterozygosity of the admixed population is at least as great as that of the least heterozygous source population, and that it potentially exceeds the heterozygosities of all of the source populations. The admixture proportions that maximize the heterozygosity possible for an admixed population formed from a specified set of source populations are also obtained under specific conditions. We examine the special case of [Formula: see text] source populations in detail, characterizing the maximal admixture in terms of the heterozygosities of the two source populations and the value of [Formula: see text] between them. In this case, the heterozygosity of the admixed population exceeds the maximal heterozygosity of the source groups if the divergence between them, measured by [Formula: see text], is large enough, namely above a certain bound that is a function of the heterozygosities of the source groups. We present applications to simulated data as well as to data from human admixture scenarios, providing results useful for interpreting the properties of genetic variability in admixed populations.


Asunto(s)
Genética de Población , Modelos Biológicos , Simulación por Computador , Heterocigoto , Humanos
14.
J Neurosci ; 40(41): 7855-7876, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32868462

RESUMEN

The external globus pallidus (GPe) is a critical node within the basal ganglia circuit. Phasic changes in the activity of GPe neurons during movement and their alterations in Parkinson's disease (PD) argue that the GPe is important in motor control. Parvalbumin-positive (PV+) neurons and Npas1+ neurons are the two principal neuron classes in the GPe. The distinct electrophysiological properties and axonal projection patterns argue that these two neuron classes serve different roles in regulating motor output. However, the causal relationship between GPe neuron classes and movement remains to be established. Here, by using optogenetic approaches in mice (both males and females), we showed that PV+ neurons and Npas1+ neurons promoted and suppressed locomotion, respectively. Moreover, PV+ neurons and Npas1+ neurons are under different synaptic influences from the subthalamic nucleus (STN). Additionally, we found a selective weakening of STN inputs to PV+ neurons in the chronic 6-hydroxydopamine lesion model of PD. This finding reinforces the idea that the reciprocally connected GPe-STN network plays a key role in disease symptomatology and thus provides the basis for future circuit-based therapies.SIGNIFICANCE STATEMENT The external pallidum is a key, yet an understudied component of the basal ganglia. Neural activity in the pallidum goes awry in neurologic diseases, such as Parkinson's disease. While this strongly argues that the pallidum plays a critical role in motor control, it has been difficult to establish the causal relationship between pallidal activity and motor function/dysfunction. This was in part because of the cellular complexity of the pallidum. Here, we showed that the two principal neuron types in the pallidum have opposing roles in motor control. In addition, we described the differences in their synaptic influence. Importantly, our research provides new insights into the cellular and circuit mechanisms that explain the hypokinetic features of Parkinson's disease.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Globo Pálido/fisiología , Red Nerviosa/fisiología , Proteínas del Tejido Nervioso/genética , Neuronas/fisiología , Parvalbúminas/genética , Animales , Axones/patología , Fenómenos Electrofisiológicos , Femenino , Globo Pálido/citología , Locomoción/fisiología , Masculino , Ratones , Red Nerviosa/citología , Optogenética , Núcleo Subtalámico/citología , Núcleo Subtalámico/fisiología , Sinapsis/fisiología
15.
JCO Clin Cancer Inform ; 4: 602-613, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32644817

RESUMEN

PURPOSE: The cancer research community is constantly evolving to better understand tumor biology, disease etiology, risk stratification, and pathways to novel treatments. Yet the clinical cancer genomics field has been hindered by redundant efforts to meaningfully collect and interpret disparate data types from multiple high-throughput modalities and integrate into clinical care processes. Bespoke data models, knowledgebases, and one-off customized resources for data analysis often lack adequate governance and quality control needed for these resources to be clinical grade. Many informatics efforts focused on genomic interpretation resources for neoplasms are underway to support data collection, deposition, curation, harmonization, integration, and analytics to support case review and treatment planning. METHODS: In this review, we evaluate and summarize the landscape of available tools, resources, and evidence used in the evaluation of somatic and germline tumor variants within the context of molecular tumor boards. RESULTS: Molecular tumor boards (MTBs) are collaborative efforts of multidisciplinary cancer experts equipped with genomic interpretation resources to aid in the delivery of accurate and timely clinical interpretations of complex genomic results for each patient, within an institution or hospital network. Virtual MTBs (VMTBs) provide an online forum for collaborative governance, provenance, and information sharing between experts outside a given hospital network with the potential to enhance MTB discussions. Knowledge sharing in VMTBs and communication with guideline-developing organizations can lead to progress evidenced by data harmonization across resources, crowd-sourced and expert-curated genomic assertions, and a more informed and explainable usage of artificial intelligence. CONCLUSION: Advances in cancer genomics interpretation aid in better patient and disease classification, more streamlined identification of relevant literature, and a more thorough review of available treatments and predicted patient outcomes.


Asunto(s)
Inteligencia Artificial , Neoplasias , Genómica , Humanos , Difusión de la Información , Bases del Conocimiento , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia
16.
Stat Med ; 39(18): 2423-2436, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32363646

RESUMEN

We consider the scenario where there is an exposure, multiple biologically defined sets of biomarkers, and an outcome. We propose a new two-step procedure that tests if any of the sets of biomarkers mediate the exposure/outcome relationship, while maintaining a prespecified familywise error rate. The first step of the proposed procedure is a screening step that removes all groups that are unlikely to be strongly associated with both the exposure and the outcome. The second step adapts recent advances in postselection inference to test if there are true mediators in each of the remaining candidate sets. We use simulation to show that this simple two-step procedure has higher statistical power to detect true mediating sets when compared with existing procedures. We then use our two-step procedure to identify a set of Lysine-related metabolites that potentially mediate the known relationship between increased body mass index and the increased risk of estrogen-receptor positive breast cancer in postmenopausal women.


Asunto(s)
Neoplasias de la Mama , Análisis de Mediación , Neoplasias de la Mama/diagnóstico , Simulación por Computador , Femenino , Humanos
17.
JCO Clin Cancer Inform ; 4: 71-88, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31990579

RESUMEN

PURPOSE: In this work, we introduce CDGnet (Cancer-Drug-Gene Network), an evidence-based network approach for recommending targeted cancer therapies. CDGnet represents a user-friendly informatics tool that expands the range of targeted therapy options for patients with cancer who undergo molecular profiling by including the biologic context via pathway information. METHODS: CDGnet considers biologic pathway information specifically by looking at targets or biomarkers downstream of oncogenes and is personalized for individual patients via user-inputted molecular alterations and cancer type. It integrates a number of different sources of knowledge: patient-specific inputs (molecular alterations and cancer type), US Food and Drug Administration-approved therapies and biomarkers (curated from DailyMed), pathways for specific cancer types (from Kyoto Encyclopedia of Genes and Genomes [KEGG]), gene-drug connections (from DrugBank), and oncogene information (from KEGG). We consider 4 different evidence-based categories for therapy recommendations. Our tool is delivered via an R/Shiny Web application. For the 2 categories that use pathway information, we include an interactive Sankey visualization built on top of d3.js that also provides links to PubChem. RESULTS: We present a scenario for a patient who has estrogen receptor (ER)-positive breast cancer with FGFR1 amplification. Although many therapies exist for patients with ER-positive breast cancer, FGFR1 amplifications may confer resistance to such treatments. CDGnet provides therapy recommendations, including PIK3CA, MAPK, and RAF inhibitors, by considering targets or biomarkers downstream of FGFR1. CONCLUSION: CDGnet provides results in a number of easily accessible and usable forms, separating targeted cancer therapies into categories in an evidence-based manner that incorporates biologic pathway information.


Asunto(s)
Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/genética , Medicina Basada en la Evidencia , Redes Reguladoras de Genes , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Medicina de Precisión , Biomarcadores de Tumor/antagonistas & inhibidores , Humanos , Neoplasias/genética , Neoplasias/patología , Selección de Paciente
18.
J Neurosci ; 40(4): 743-768, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31811030

RESUMEN

Within the basal ganglia circuit, the external globus pallidus (GPe) is critically involved in motor control. Aside from Foxp2+ neurons and ChAT+ neurons that have been established as unique neuron types, there is little consensus on the classification of GPe neurons. Properties of the remaining neuron types are poorly defined. In this study, we leverage new mouse lines, viral tools, and molecular markers to better define GPe neuron subtypes. We found that Sox6 represents a novel, defining marker for GPe neuron subtypes. Lhx6+ neurons that lack the expression of Sox6 were devoid of both parvalbumin and Npas1. This result confirms previous assertions of the existence of a unique Lhx6+ population. Neurons that arise from the Dbx1+ lineage were similarly abundant in the GPe and displayed a heterogeneous makeup. Importantly, tracing experiments revealed that Npas1+-Nkx2.1+ neurons represent the principal noncholinergic, cortically-projecting neurons. In other words, they form the pallido-cortical arm of the cortico-pallido-cortical loop. Our data further show that pyramidal-tract neurons in the cortex collateralized within the GPe, forming a closed-loop system between the two brain structures. Overall, our findings reconcile some of the discrepancies that arose from differences in techniques or the reliance on preexisting tools. Although spatial distribution and electrophysiological properties of GPe neurons reaffirm the diversification of GPe subtypes, statistical analyses strongly support the notion that these neuron subtypes can be categorized under the two principal neuron classes: PV+ neurons and Npas1+ neurons.SIGNIFICANCE STATEMENT The poor understanding of the neuronal composition in the external globus pallidus (GPe) undermines our ability to interrogate its precise behavioral and disease involvements. In this study, 12 different genetic crosses were used, hundreds of neurons were electrophysiologically characterized, and >100,000 neurons were histologically- and/or anatomically-profiled. Our current study further establishes the segregation of GPe neuron classes and illustrates the complexity of GPe neurons in adult mice. Our results support the idea that Npas1+-Nkx2.1+ neurons are a distinct GPe neuron subclass. By providing a detailed analysis of the organization of the cortico-pallidal-cortical projection, our findings establish the cellular and circuit substrates that can be important for motor function and dysfunction.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Corteza Cerebral/metabolismo , Globo Pálido/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Factor Nuclear Tiroideo 1/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Vías Nerviosas/metabolismo , Factor Nuclear Tiroideo 1/genética
19.
Oncotarget ; 10(58): 6184-6203, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31692930

RESUMEN

Triple negative breast cancer (TNBC), a clinically aggressive breast cancer subtype, affects 15-35% of women from Latin America. Using an approach of direct integration of copy number and global miRNA profiling data, performed simultaneously in the same tumor specimens, we identified a panel of 17 miRNAs specifically associated with TNBC of ancestrally characterized patients from Latin America, Brazil. This panel was differentially expressed between the TNBC and non-TNBC subtypes studied (p ≤ 0.05, FDR ≤ 0.25), with their expression levels concordant with the patterns of copy number alterations (CNAs), present mostly frequent at 8q21.3-q24.3, 3q24-29, 6p25.3-p12.2, 1q21.1-q44, 5q11.1-q22.1, 11p13-p11.2, 13q12.11-q14.3, 17q24.2-q25.3 and Xp22.33-p11.21. The combined 17 miRNAs presented a high power (AUC = 0.953 (0.78-0.99);95% CI) in discriminating between the TNBC and non-TNBC subtypes of the patients studied. In addition, the expression of 14 and 15 of the 17miRNAs was significantly associated with tumor subtype when adjusted for tumor stage and grade, respectively. In conclusion, the panel of miRNAs identified demonstrated the impact of CNAs in miRNA expression levels and identified miRNA target genes potentially affected by both CNAs and miRNA deregulation. These targets, involved in critical signaling pathways and biological functions associated specifically with the TNBC transcriptome of Latina patients, can provide biological insights into the observed differences in the TNBC clinical outcome among racial/ethnic groups, taking into consideration their genetic ancestry.

20.
PLoS One ; 14(7): e0219507, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31310630

RESUMEN

Urine is increasingly being considered as a source of biomarker development in Duchenne Muscular Dystrophy (DMD), a severe, life-limiting disorder that affects approximately 1 in 4500 boys. In this study, we considered the mdx mice-a murine model of DMD-to discover biomarkers of disease, as well as pharmacodynamic biomarkers responsive to prednisolone, a corticosteroid commonly used to treat DMD. Longitudinal urine samples were analyzed from male age-matched mdx and wild-type mice randomized to prednisolone or vehicle control via liquid chromatography tandem mass spectrometry. A large number of metabolites (869 out of 6,334) were found to be significantly different between mdx and wild-type mice at baseline (Bonferroni-adjusted p-value < 0.05), thus being associated with disease status. These included a metabolite with m/z = 357 and creatine, which were also reported in a previous human study looking at serum. Novel observations in this study included peaks identified as biliverdin and hypusine. These four metabolites were significantly higher at baseline in the urine of mdx mice compared to wild-type, and significantly changed their levels over time after baseline. Creatine and biliverdin levels were also different between treated and control groups, but for creatine this may have been driven by an imbalance at baseline. In conclusion, our study reports a number of biomarkers, both known and novel, which may be related to either the mechanisms of muscle injury in DMD or prednisolone treatment.


Asunto(s)
Biomarcadores/orina , Distrofia Muscular Animal/tratamiento farmacológico , Distrofia Muscular Animal/orina , Prednisolona/uso terapéutico , Animales , Biliverdina/orina , Cromatografía Liquida , Creatina/orina , Genotipo , Estudios Longitudinales , Lisina/análogos & derivados , Lisina/orina , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/orina , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA