Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39211113

RESUMEN

Cancer cell proliferation requires precise control of E2F1 activity; excess activity promotes apoptosis. Here, we developed cell-permeable and bioavailable macrocycles that selectively kill small cell lung cancer (SCLC) cells with inherent high E2F1 activity by blocking RxL-mediated interactions of cyclin A and cyclin B with select substrates. Genome-wide CRISPR/Cas9 knockout and random mutagenesis screens found that cyclin A/B RxL macrocyclic inhibitors (cyclin A/Bi) induced apoptosis paradoxically by cyclin B- and Cdk2-dependent spindle assembly checkpoint activation (SAC). Mechanistically, cyclin A/Bi hyperactivate E2F1 and cyclin B by blocking their RxL-interactions with cyclin A and Myt1, respectively, ultimately leading to SAC activation and mitotic cell death. Base editor screens identified cyclin B variants that confer cyclin A/Bi resistance including several variants that disrupted cyclin B:Cdk interactions. Unexpectedly but consistent with our base editor and knockout screens, cyclin A/Bi induced the formation of neo-morphic Cdk2-cyclin B complexes that promote SAC activation and apoptosis. Finally, orally-bioavailable cyclin A/Bi robustly inhibited tumor growth in chemotherapy-resistant patient-derived xenograft models of SCLC. This work uncovers gain-of-function mechanisms by which cyclin A/Bi induce apoptosis in cancers with high E2F activity, and suggests cyclin A/Bi as a therapeutic strategy for SCLC and other cancers driven by high E2F activity.

2.
Bioconjug Chem ; 34(1): 212-217, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36534758

RESUMEN

Advancements in the molecular recognition of insulin by nonantibody-based means would facilitate the development of methodology for the continuous detection of insulin for the management of diabetes mellitus. Herein, we report a novel insulin derivative that binds to the synthetic receptor cucurbit[7]uril (Q7) at a single site and with high nanomolar affinity. The insulin derivative was prepared by a four-step protein semisynthetic method to present a 4-aminomethyl group on the side chain of the PheB1 position. The resulting aminomethyl insulin binds to Q7 with an equilibrium dissociation constant value of 99 nM in neutral phosphate buffer, as determined by isothermal titration calorimetry. This 6.8-fold enhancement in affinity versus native insulin was gained by an atom-economical modification (-CH2NH2). To the best of our knowledge, this is the highest reported binding affinity for an insulin derivative by a synthetic receptor. This strategy for engineering protein affinity tags induces minimal change to the protein structure while increasing affinity and selectivity for a synthetic receptor.


Asunto(s)
Insulina , Receptores Artificiales , Insulina/síntesis química , Insulina/química , Receptores Artificiales/química , Receptores Artificiales/metabolismo
3.
J Am Chem Soc ; 140(38): 12263-12269, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30221936

RESUMEN

This Article describes the molecular recognition of peptides containing an N-terminal methionine (Met) by the synthetic receptor cucurbit[8]uril (Q8) in aqueous solution and with submicromolar affinity. Prior work established that Q8 binds with high affinity to peptides containing aromatic amino acids, either by simultaneous binding of two aromatic residues, one from each of two different peptides, or by simultaneous binding of an aromatic residue and its immediate neighbor on the same peptide. The additional binding interface of two neighboring residues suggested the possibility of targeting nonaromatic peptides, which have thus far bound only weakly to synthetic receptors. A peptide library designed to test this hypothesis was synthesized and screened qualitatively for Q8 binding using a fluorescent indicator displacement assay. The large fluorescence response observed for several Met-terminated peptides suggested strong binding, which was confirmed quantitatively by the determination of submicromolar equilibrium dissociation constant values for Q8 binding to MLA, MYA, and MFA using isothermal titration calorimetry (ITC). This discovery of high affinity binding to Met-terminated peptides and, more generally, to nonaromatic peptides prompted a detailed investigation of the determinants of binding in this system using ITC, electrospray ionization mass spectrometry, and 1H NMR spectroscopy for 25 purified peptides. The studies establish the sequence determinants required for high-affinity binding of Met-terminated peptides and demonstrate that cucurbit[ n]uril-mediated peptide recognition does not require an aromatic residue for high affinity. These results, combined with the known ability of cucurbit[ n]urils to target N-termini and disordered loops in folded proteins, suggest that Q8 could be used to target unmodified, Met-terminated proteins.


Asunto(s)
Hidrocarburos Aromáticos con Puentes/metabolismo , Imidazoles/metabolismo , Metionina/química , Péptidos/metabolismo , Secuencia de Aminoácidos , Hidrocarburos Aromáticos con Puentes/química , Imidazoles/química , Biblioteca de Péptidos , Péptidos/síntesis química , Péptidos/química , Unión Proteica , Termodinámica
4.
Curr Opin Chem Biol ; 38: 141-147, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28570865

RESUMEN

As interest in protein-protein interactions and other previously-undruggable targets increases, medicinal chemists are returning to natural products for design inspiration toward molecules that transcend the paradigm of small molecule drugs. These compounds, especially peptides, often have poor ADME properties and thus require a more nuanced understanding of structure-property relationships to achieve desirable oral bioavailability. Although there have been few clinical successes in this chemical space to date, recent work has identified opportunities to introduce favorable physicochemical properties to peptidic macrocycles that maintain activity and oral bioavailability.


Asunto(s)
Productos Biológicos/farmacocinética , Terapia Molecular Dirigida/métodos , Péptidos Cíclicos/farmacocinética , Administración Oral , Animales , Disponibilidad Biológica , Productos Biológicos/administración & dosificación , Productos Biológicos/metabolismo , Productos Biológicos/farmacología , Humanos , Péptidos Cíclicos/administración & dosificación , Péptidos Cíclicos/metabolismo , Péptidos Cíclicos/farmacología , Permeabilidad
5.
J Am Chem Soc ; 138(50): 16549-16552, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-27998093

RESUMEN

This paper describes the design and synthesis of a conjugate (Q7R) comprising the synthetic host cucurbit[7]uril (Q7) linked to the fluorescent dye tetramethylrhodamine (TMR), and the characterization of its optical and guest-binding properties as well as its cellular uptake. Q7R was synthesized in two steps from monofunctionalized azidobutyl-Q7 and NHS-activated TMR. The fluorescence of Q7R is quenched upon guest binding, and this observable was used to determine equilibrium dissociation constant (Kd) values. Unexpectedly, the Kd values for guests binding to Q7R and to unmodified Q7 were essentially identical. Therefore, Q7R can directly report binding to Q7 without an energetic penalty due to the conjugated fluorophore. This result demonstrates a potentially general strategy for the design of single-component host-indicator conjugates that respond sensitively to analytes without perturbing the binding properties of the host. The unique properties of Q7R enabled measurement of Kd values across 3 orders of magnitude and at concentrations as low as 0.7 nM. This result is particularly relevant given the unmatched range of guests and binding affinities demonstrated for Q7. Confocal fluorescence microscopy of live and fixed HT22 neurons revealed the cellular uptake of Q7R and its punctate localization in the cytoplasm. Q7R did not alter cell growth at concentrations up to 2.2 µM over 4 days. These experiments demonstrate the feasibility of Q7R as a direct sensor for guest binding and as a cell-permeable compound for imaging applications.


Asunto(s)
Hidrocarburos Aromáticos con Puentes/química , Imidazoles/química , Imagen Molecular/métodos , Rodaminas/química , Línea Celular Tumoral , Humanos
6.
Chem Commun (Camb) ; 52(55): 8537-40, 2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27311878

RESUMEN

The recognition of human growth hormone (hGH) by the synthetic host molecule cucurbit[7]uril (Q7) was predicted on the basis of its N-terminal phenylalanine. An aqueous-compatible resin with covalently immobilized Q7 groups was prepared and shown to recognize native insulin and hGH in simple and complex mixtures.


Asunto(s)
Hidrocarburos Aromáticos con Puentes/metabolismo , Hormona de Crecimiento Humana/metabolismo , Imidazoles/metabolismo , Hormona de Crecimiento Humana/química , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica
7.
J Med Chem ; 58(18): 7409-18, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26308180

RESUMEN

It is well established that intramolecular hydrogen bonding and N-methylation play important roles in the passive permeability of cyclic peptides, but other structural features have been explored less intensively. Recent studies on the oral bioavailability of the cyclic heptapeptide sanguinamide A have raised the question of whether steric occlusion of polar groups via ß-branching is an effective, yet untapped, tool in cyclic peptide permeability optimization. We report the structures of 17 sanguinamide A analogues designed to test the relative contributions of ß-branching, N-methylation, and side chain size to passive membrane permeability and aqueous solubility. We demonstrate that ß-branching has little effect on permeability compared to the effects of aliphatic carbon count and N-methylation of exposed NH groups. We highlight a new N-methylated analogue of sanguinamide A with a Leu substitution at position 2 that exhibits solvent-dependent flexibility and improved permeability over that of the natural product.


Asunto(s)
Péptidos Cíclicos/química , Tiazoles/química , Células CACO-2 , Humanos , Membranas Artificiales , Metilación , Simulación de Dinámica Molecular , Péptidos Cíclicos/metabolismo , Permeabilidad , Solubilidad , Relación Estructura-Actividad , Tiazoles/metabolismo , Agua
8.
Future Med Chem ; 7(16): 2121-30, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26067057

RESUMEN

Many cyclic peptide natural products are larger and structurally more complex than conventional small molecule drugs. Although some molecules in this class are known to possess favorable pharmacokinetic properties, there have been few reports on the membrane permeabilities of cyclic peptide natural products. Here, we present the passive membrane permeabilities of 39 cyclic peptide natural products, and interpret the results using a computational permeability prediction algorithm based on their known or calculated 3D conformations. We found that the permeabilities of these compounds, measured in a parallel artificial membrane permeability assay, spanned a wide range and demonstrated the important influence of conformation on membrane permeability. These results will aid in the development of these compounds as a viable drug paradigm.


Asunto(s)
Productos Biológicos/química , Productos Biológicos/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Membranas Artificiales , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Ciclosporina/química , Ciclosporina/farmacología , Humanos
9.
J Med Chem ; 58(11): 4581-9, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-25950816

RESUMEN

Cyclic peptide natural products contain a variety of conserved, nonproteinogenic structural elements such as d-amino acids and amide N-methylation. In addition, many cyclic peptides incorporate γ-amino acids and other elements derived from polyketide synthases. We hypothesized that the position and orientation of these extended backbone elements impact the ADME properties of these hybrid molecules, especially their ability to cross cell membranes and avoid metabolic degradation. Here we report the synthesis of cyclic hexapeptide diastereomers containing γ-amino acids (e.g., statines) and systematically investigate their structure-permeability relationships. These compounds were much more water-soluble and, in many cases, were both more membrane permeable and more stable to liver microsomes than a similar non-statine-containing derivative. Permeability correlated well with the extent of intramolecular hydrogen bonding observed in the solution structures determined in the low-dielectric solvent CDCl3, and one compound showed an oral bioavailability of 21% in rat. Thus, the incorporation of γ-amino acids offers a route to increase backbone diversity and improve ADME properties in cyclic peptide scaffolds.


Asunto(s)
Productos Biológicos/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Compuestos Macrocíclicos/farmacología , Microsomas Hepáticos/efectos de los fármacos , Péptidos Cíclicos/farmacología , Solventes/química , Administración Oral , Animales , Disponibilidad Biológica , Productos Biológicos/química , Fenómenos Químicos , Enlace de Hidrógeno , Compuestos Macrocíclicos/administración & dosificación , Compuestos Macrocíclicos/química , Espectroscopía de Resonancia Magnética , Masculino , Modelos Moleculares , Estructura Molecular , Péptidos Cíclicos/administración & dosificación , Péptidos Cíclicos/química , Ratas , Ratas Wistar , Relación Estructura-Actividad
10.
Curr Top Med Chem ; 13(7): 821-36, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23578026

RESUMEN

The structural complexity of many natural products sets them apart from common synthetic drugs, allowing them to access a biological target space that lies beyond the enzyme active sites and receptors targeted by conventional small molecule drugs. Naturally occurring cyclic peptides, in particular, exhibit a wide variety of unusual and potent biological activities. Many of these compounds penetrate cells by passive diffusion and some, like the clinically important drug cyclosporine A, are orally bioavailable. These natural products tend to have molecular weights and polar group counts that put them outside the norm based on classic predictors of "drug-likeness". Because of their size and complexity, cyclic peptides occupy a chemical "middle space" in drug discovery that may provide useful scaffolds for modulating more challenging biological targets such as protein-protein interactions and allosteric binding sites. However, the relationship between structure and pharmacokinetic (PK) behavior, especially cell permeability and metabolic clearance, in cyclic peptides has not been studied systematically, and the generality of cyclic peptides as orally bioavailable scaffolds remains an open question. This review focuses on cyclic peptide natural products from a "structure-PK" perspective, outlining what we know and don't know about their properties in the hope of uncovering trends that might be useful in the design of novel "rule-breaking" molecules.


Asunto(s)
Productos Biológicos/farmacocinética , Péptidos Cíclicos/farmacocinética , Animales , Productos Biológicos/química , Productos Biológicos/metabolismo , Descubrimiento de Drogas , Humanos , Modelos Moleculares , Conformación Molecular , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...