Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Sleep Res ; 32(2): e13618, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35460107

RESUMEN

Sleep spindles are developmentally relevant cortical oscillatory patterns; however, they have mostly been studied by considering the entire spindle frequency range (11-15 Hz) without a distinction between the functionally and topographically different slow and fast spindles, using relatively few electrodes and analysing wide age-ranges. Here, we employ high-density night sleep electroencephalography in three age-groups between 12 and 20 years of age (30 females and 30 males) and analyse the adolescent developmental pattern of the four major parameters of slow and fast sleep spindles. Most of our findings corroborate those very few previous studies that also make a distinction between slow and fast spindles in their developmental analysis. We find spindle frequency increasing with age. A spindle density change is not obvious in our study. We confirm the declining tendencies for amplitude and duration, although within narrower, more specific age-windows than previously determined. Spindle frequency seems to be higher in females in the oldest age-group. Based on the pattern of our findings, we suggest that high-density electroencephalography, specifically targeting slow and fast spindle ranges and relatively narrow age-ranges would advance the understanding of both adolescent cortical maturation and development and the functional relevance of sleep spindles in general.


Asunto(s)
Electroencefalografía , Sueño , Masculino , Femenino , Humanos , Adolescente , Niño , Adulto Joven , Adulto , Electrodos , Fases del Sueño
2.
Sci Rep ; 12(1): 7023, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35487959

RESUMEN

Current theories of human neural development emphasize the posterior-to-anterior pattern of brain maturation. However, this scenario leaves out significant brain areas not directly involved with sensory input and behavioral control. Suggesting the relevance of cortical activity unrelated to sensory stimulation, such as sleep, we investigated adolescent transformations in the topography of sleep spindles. Sleep spindles are known to be involved in neural plasticity and in adults have a bimodal topography: slow spindles are frontally dominant, while fast spindles have a parietal/precuneal origin. The late functional segregation of the precuneus from the frontoparietal network during adolescence suggests that spindle topography might approach the adult state relatively late in development, and it may not be a result of the posterior-to-anterior maturational pattern. We analyzed the topographical distribution of spindle parameters in HD-EEG polysomnographic sleep recordings of adolescents and found that slow spindle duration maxima traveled from central to anterior brain regions, while fast spindle density, amplitude and frequency peaks traveled from central to more posterior brain regions. These results provide evidence for the gradual posteriorization of the anatomical localization of fast sleep spindles during adolescence and indicate the existence of an anterior-to-posterior pattern of human brain maturation.


Asunto(s)
Fases del Sueño , Sueño , Adolescente , Adulto , Encéfalo/fisiología , Electroencefalografía/métodos , Humanos , Lóbulo Parietal , Sueño/fisiología , Fases del Sueño/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...