Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chromatogr A ; 1736: 465357, 2024 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-39270566

RESUMEN

The ability of reduced graphene oxide aerogels (rGOAs) for challenging gas-phase separation was investigated with hexane isomers and benzene (C6 hydrocarbons) using inverse gas chromatography (IGC). For the first, rGOAs were synthesized with sodium dithionite (DTN) as a reductant. Experiments revealed that the most optimal DTN to graphene oxide mass ratio was 2:1, resulting in the highest specific surface area of 432.3 m2 g-1 and the highest degree of graphitization among analyzed samples. C6 hydrocarbon adsorption tests demonstrated the dominant role of the kinetic effect for the adsorption of branched and cyclic hexane isomers - the partition coefficient decreased as the molecule kinetic diameter increased. The contribution of thermodynamic effects was distinguished for molecules with uneven charge distribution. A comparison of the partition coefficient ratios for different pairs of hydrocarbons demonstrated the potential of rGOAs in separating various C6 hydrocarbons. The selectivity, calculated from binary-component adsorption tests of benzene (Bz)/cC6 equimolar mixture, was 13.7, 8.5 and 2.8 for DTN4, DTN2, and DTN1. The research indicates that rGOAs may have potential as adsorbents for the selective separation of hydrocarbons, however, the competitive adsorption and performance at high surface coverages of adsorbates have to be accounted for in further research to assess the applicability of rGOAs reliably.


Asunto(s)
Benceno , Grafito , Grafito/química , Adsorción , Cromatografía de Gases/métodos , Benceno/química , Benceno/aislamiento & purificación , Geles/química , Hidrocarburos/química , Hidrocarburos/aislamiento & purificación , Hexanos/química , Termodinámica , Oxidación-Reducción , Cinética
2.
Water Res ; 263: 122148, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39098154

RESUMEN

Conventional water treatment systems frequently exhibit diminished efficiency at high salinity - a significant issue especially for real industrial effluents - mostly due to the creation of intricate structures between pollutants and salts. One of the primary obstacles associated with high salinity conditions is the generation of by-products that pose additional hurdles for treatment. In this work, we have investigated the novel advanced oxidation process a so-called ozone nanobubble technology for degradation of the pollutants at high salinity conditions. The mass transfer is often the rate-limiting step in gas-liquid process and the poor rate of mass transfer diminishes the overall efficacy. One of the primary disadvantages associated with ozone is its restricted solubility and instability when dissolved in an aqueous solution. These characteristics impose limitations on its potential applications and need the use of specialized systems to facilitate gas-liquid interaction. In this work, we have also suggested enhancing the ozonation process through the utilization of ozone nanobubbles. The findings of our experiment and subsequent analysis indicate that the presence of nanobubbles enhances the process of ozonation through three key mechanisms: (i) an increased mass transfer coefficient, (ii) a higher rate of reactive oxygen species (ROS) generation attributed to the charged interface, and (iii) the nanobubble interface serving as an active surface for chemical reactions. The predicted mass transfer coefficients were found to range from 3 to 3.5 min-1, a value that is notably greater than that seen for microbubbles. The study showcased the degradation of methylene blue dye through the utilization of ozone nanobubbles, which exhibited a much higher rate of dye degradation compared to ozone microbubbles. The confirmation of the radical degradation mechanism was achieved by the utilization of electron spin resonance (ESR) measurements. The developed process has high potential for application in industrial scale textile wastewater treatment.


Asunto(s)
Ozono , Salinidad , Contaminantes Químicos del Agua , Ozono/química , Contaminantes Químicos del Agua/química , Purificación del Agua , Oxidación-Reducción , Especies Reactivas de Oxígeno/química
3.
J Environ Manage ; 363: 121343, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38843727

RESUMEN

This work presents a novel advanced oxidation process (AOP) for degradation of emerging organic pollutants - benzene, toluene, ethylbenzene and xylenes (BTEXs) in water. A comparative study was performed for sonocavitation assisted ozonation under 40-120 kHz and 80-200 kHz dual frequency ultrasounds (DFUS). Based on the obtained results, the combination of 40-120 kHz i.e., low-frequency US (LFDUS) with O3 exhibited excellent oxidation capacity degrading 99.37-99.69% of BTEXs in 40 min, while 86.09-91.76% of BTEX degradation was achieved after 60 min in 80-200 kHz i.e., high-frequency US (HFDUS) combined with O3. The synergistic indexes determined using degradation rate constants were found as 7.86 and 2.9 for LFDUS/O3 and HFDUS/O3 processes, respectively. The higher extend of BTEX degradation in both processes was observed at pH 6.5 and 10. Among the reactive oxygen species (ROSs), hydroxyl radicals (HO•) were found predominant according to scavenging tests, singlet oxygen also importantly contributed in degradation, while O2•- radicals had a minor contribution. Sulfate (SO42-) ions demonstrated higher inhibitory effect compared to chloride (Cl-) and carbonate (CO32-) ions in both processes. Degradation pathways of BTEX was proposed based on the intermediates identified using GC-MS technique.


Asunto(s)
Derivados del Benceno , Benceno , Ozono , Contaminantes Químicos del Agua , Xilenos , Ozono/química , Xilenos/química , Derivados del Benceno/química , Benceno/química , Contaminantes Químicos del Agua/química , Tolueno/química , Oxidación-Reducción , Agua/química , Especies Reactivas de Oxígeno/química , Purificación del Agua/métodos
4.
Food Chem ; 454: 139785, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823199

RESUMEN

In this study, a cheap, fast and simple orbital shaker-assisted fatty acid-based switchable solvent microextraction (OS-FASS-ME) procedure was developed for the extraction of amoxicillin (AMOX) in dairy products, pharmaceutical samples and wastewater prior to its spectrophotometric analysis. Fatty acid-based switchable solvents were investigated for extracting AMOX. The key factors of the OS-FASS-ME procedure were optimized using a central composite design. The linearity of OS-FASS-ME procedure was in the range 5-600 ng mL-1 with a correlation coefficient of 0.991. In five replicate experiments for 20 ng mL-1 of AMOX solution, the recovery and relative standard deviation were 95.8% and 2.2%, respectively. Limits of detection and quantification were found 1.5 ng mL-1 and 5 ng mL-1, respectively. The accuracy, precision, robustness and selectivity of the OS-FASS-ME procedure were investigated in detail under optimum conditions. The OS-FASS-ME procedure was applied to milk, cheese, wastewater, syrups and tablets. A comparison of the results obtained from the reference method and the OS-FASS-ME method showed that the OS-FASS-ME procedure can be successfully applied to complex matrices.


Asunto(s)
Amoxicilina , Ácidos Grasos , Microextracción en Fase Líquida , Amoxicilina/química , Amoxicilina/aislamiento & purificación , Amoxicilina/análisis , Microextracción en Fase Líquida/métodos , Ácidos Grasos/química , Aguas Residuales/química , Aguas Residuales/análisis , Antibacterianos/química , Antibacterianos/análisis , Antibacterianos/aislamiento & purificación , Solventes/química , Tecnología Química Verde , Animales , Leche/química , Productos Lácteos/análisis
5.
Small ; 20(33): e2402015, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38597684

RESUMEN

Water electrolysis is among the recent alternatives for generating clean fuels (hydrogen). It is an efficient way to produce pure hydrogen at a rapid pace with no unwanted by-products. Effective and cheap water-splitting electrocatalysts with enhanced activity, specificity, and stability are currently widely studied. In this regard, noble metal-free transition metal-based catalysts are of high interest. Iron sulfide (FeS) is one of the essential electrocatalysts for water splitting because of its unique structural and electrochemical features. This article discusses the significance of FeS and its nanocomposites as efficient electrocatalysts for oxygen evolution reaction (OER), hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), and overall water splitting. FeS and its nanocomposites have been studied also for energy storage in the form of electrode materials in supercapacitors and lithium- (LIBs) and sodium-ion batteries (SIBs). The structural and electrochemical characteristics of FeS and its nanocomposites, as well as the synthesis processes, are discussed in this work. This discussion correlates these features with the requirements for electrocatalysts in overall water splitting and its associated reactions. As a result, this study provides a road map for researchers seeking economically viable, environmentally friendly, and efficient electrochemical materials in the fields of green energy production and storage.

6.
Molecules ; 29(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38542903

RESUMEN

Shape memory and self-healing polymer nanocomposites have attracted considerable attention due to their modifiable properties and promising applications. The incorporation of nanomaterials (polypyrrole, carboxyl methyl cellulose, carbon nanotubes, titania nanotubes, graphene, graphene oxide, mesoporous silica) into these polymers has significantly enhanced their performance, opening up new avenues for diverse applications. The self-healing capability in polymer nanocomposites depends on several factors, including heat, quadruple hydrogen bonding, π-π stacking, Diels-Alder reactions, and metal-ligand coordination, which collectively govern the interactions within the composite materials. Among possible interactions, only quadruple hydrogen bonding between composite constituents has been shown to be effective in facilitating self-healing at approximately room temperature. Conversely, thermo-responsive self-healing and shape memory polymer nanocomposites require elevated temperatures to initiate the healing and recovery processes. Thermo-responsive (TRSMPs), light-actuated, magnetically actuated, and Electrically actuated Shape Memory Polymer Nanocomposite are discussed. This paper provides a comprehensive overview of the different types of interactions involved in SMP and SHP nanocomposites and examines their behavior at both room temperature and elevated temperature conditions, along with their biomedical applications. Among many applications of SMPs, special attention has been given to biomedical (drug delivery, orthodontics, tissue engineering, orthopedics, endovascular surgery), aerospace (hinges, space deployable structures, morphing aircrafts), textile (breathable fabrics, reinforced fabrics, self-healing electromagnetic interference shielding fabrics), sensor, electrical (triboelectric nanogenerators, information energy storage devices), electronic, paint and self-healing coating, and construction material (polymer cement composites) applications.

7.
Food Chem ; 447: 139024, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38493687

RESUMEN

This manuscript describes the development of a novel liquid phase microextraction (LPME) method for the extraction and determination of Zn (II), Fe (II), Pb (II), and Cd (II) in various infant/baby food and supplements products. The method is based on vortex-assisted extraction combined with a switchable-hydrophilicity solvent (SHS) sample preparation. The SHS, which undergoes reversible phase changes triggered by pH change, enables selective extraction and easy phase separation. A flame atomic absorption spectroscopy was used in the final determination step. Optimization studies revealed, that the optimal pH of the sample solution (after digestion) during analytes extraction is 5.5. A l-proline is added to the sample (375 mM) to ensure the complexation of the target metal cations. After the complexation step, 750 µL of SHS - a N, N-Dimethylcyclohexylamine along with 0.9 mL of 2 M of acetic acid solution is added (hydrophilicity switch-on stage) and mixed manually to obtain a homogeneous solution. In the last stage, 0.45 mL of 10 M NaOH solution (hydrophilicity switch-off stage) is added to the sample solution and a vortex for 100 s is applied to ensure the effective extraction and separation of the complex containing the analytes. At this stage, a cloudy solution is immediately obtained. Finally, the effective phase separation is obtained at the centrifugation step (4000 rpm for 2 mins). The method limit of detection was as 0.03, 0.009, 0.6, and 0.2 ng/L for Zn (II), Fe (II), Cd (II), and Pb (II) respectively with RSD% below 2.0 %. The analysis of certified reference materials and real samples proved the full applicability of the method for routine analysis, contributing to the field of heavy metal analysis and ensuring the safety of baby products. According to the AGREE methodology, this method can be named as green analytical chemistry method with a score of 0.77.


Asunto(s)
Cadmio , Microextracción en Fase Líquida , Humanos , Solventes/química , Plomo , Microextracción en Fase Líquida/métodos , Alimentos Infantiles , Interacciones Hidrofóbicas e Hidrofílicas , Zinc , Límite de Detección
8.
Sci Total Environ ; 919: 170820, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38340814

RESUMEN

In this work, different ratios of palladium - cerium oxide (Pd/CeO2) catalyst were synthesized and characterized, while their sonocatalytic activity was evaluated for the degradation of the xenobiotic Bisphenol A (BPA) from aqueous solutions. Sonocatalytic activity expressed as BPA decomposition exhibited a volcano-type behavior in relation to the Pd loading, and the 0.25Pd/CeO2 catalyst characterized by the maximum Pd dispersion and lower crystallite size demonstrated the higher activity. Using 500 mg/L of 0.25 % Pd/CeO2 increased the kinetic constant for BPA destruction by more than two times compared to sonolysis alone (20 kHz at 71 W/L). Meanwhile, the simultaneous use of ultrasound and a catalyst enhanced the efficiency by 50.1 % compared to the sum of the individual processes, resulting in 95 % BPA degradation in 60 min. The sonocatalytic degradation of BPA followed pseudo-first-order kinetics, and the apparent kinetic constant was increased with ultrasound power and catalyst loading, while the efficiency was decreased in bottled water and secondary effluent. From the experiments that were conducted using appropriate scavengers, it was revealed that the degradation mainly occurred on the bubble/liquid interface of the formed cavities, while the reactive species produced from the thermal or light excitation of the prepared semiconductor also participated in the reaction. Five first-stage and four late-stage transformation products were identified using UHPLC/TOF-MS, and a pathway for the sonocatalytic degradation of BPA was proposed. According to ECOSAR software prediction, most transformation by-products (TBPs) present lower ecotoxicity than the parent compound, although some remain toxic to the indicators chosen.

9.
Environ Res ; 239(Pt 1): 117192, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37748672

RESUMEN

A wide array of environmental pollutants is often generated and released into the ecosystem from industrial and human activities. Antibiotics, phenolic compounds, hydroquinone, industrial dyes, and Endocrine-Disrupting Chemicals (EDCs) are prevalent pollutants in water matrices. To promote environmental sustainability and minimize the impact of these pollutants, it is essential to eliminate such contaminants. Although there are multiple methods for pollutants removal, many of them are inefficient and environmentally unfriendly. Horseradish peroxidase (HRP) has been widely explored for its ability to oxidize the aforementioned pollutants, both alone and in combination with other peroxidases, and in an immobilized way. Numerous positive attributes make HRP an excellent biocatalyst in the biodegradation of diverse environmentally hazardous pollutants. In the present review, we underlined the major advancements in the HRP for environmental research. Numerous immobilization and combinational studies have been reviewed and summarized to comprehend the degradability, fate, and biotransformation of pollutants. In addition, a possible deployment of emerging computational methodologies for improved catalysis has been highlighted, along with future outlook and concluding remarks.


Asunto(s)
Ecosistema , Contaminantes Ambientales , Humanos , Peroxidasa de Rábano Silvestre , Peroxidasas , Catálisis , Antibacterianos
10.
Chemosphere ; 345: 140203, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37734498

RESUMEN

The degradation of pollutants by a non-radical pathway involving singlet oxygen (1O2) is highly relevant in advanced oxidation processes. Photosensitizers, modified photocatalysts, and activated persulfates can generate highly selective 1O2 in the medium. The selective reaction of 1O2 with organic pollutants results in the evolution of different intermediate products. While these products can be identified using mass spectrometry (MS) techniques, predicting a proper degradation mechanism in a 1O2-based process is still challenging. Earlier studies utilized MS techniques in the identification of intermediate products and the mechanism was proposed with the support of theoretical calculations. Although some reviews have been reported on the generation of 1O2 and its environmental applications, a proper review of the degradation mechanism by 1O2 is not yet available. Hence, we reviewed the possible degradation pathways of organic contaminants in 1O2-mediated oxidation with the support of density functional theory (DFT). The Fukui function (FF, f-, f+, and f0), HOMO-LUMO energies, and Gibbs free energies obtained using DFT were used to identify the active site in the molecule and the degradation mechanism, respectively. Electrophilic addition, outer sphere type single electron transfer (SET), and addition to the hetero atoms are the key mechanisms involved in the degradation of organic contaminants by 1O2. Since environmental matrices contain several contaminants, it is difficult to experiment with all contaminants to identify their intermediate products. Therefore, the DFT studies are useful for predicting the intermediate compounds during the oxidative removal of the contaminants, especially for complex composition wastewater.


Asunto(s)
Oxígeno Singlete , Aguas Residuales , Oxígeno Singlete/química , Teoría Funcional de la Densidad , Oxidación-Reducción , Espectrometría de Masas
11.
RSC Adv ; 13(30): 20430-20442, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37435380

RESUMEN

Organochlorine pesticides (OCPs) have been used extensively as insecticides and herbicides. This study investigates the occurrence of lindane in surface water from the Peshawar valley (i.e., Peshawar, Charsadda, Nowshera, Mardan and Swabi districts of Khyber Pakhtunkhwa, Pakistan). Out of 75 samples tested (i.e., 15 samples from each district), 13 samples (including 2 from Peshawar, 3 from Charsadda, 4 from Nowshera, 1 from Mardan, and 3 from Swabi) are found to be contaminated with lindane. Overall, the detection frequency is 17.3%. The maximum concentration of lindane is detected in a water sample from Nowshera and found to be 2.60 µg L-1. Furthermore, the degradation of lindane in the water sample from Nowshera, containing the maximum concentration, is investigated by simulated solar-light/TiO2 (solar/TiO2), solar/H2O2/TiO2 and solar/persulfate/TiO2 photocatalysis. The degradation of lindane by solar/TiO2 photocatalysis is 25.77% after 10 h of irradiation. The efficiency of the solar/TiO2 process is significantly increased in the presence of 500 µM H2O2 and 500 µM persulfate (PS) (separately), represented by 93.85 and 100.00% lindane removal, respectively. The degradation efficiency of lindane is lower in natural water samples as compared to Milli-Q water, attributed to water matrix effect. Moreover, the identification of degradation products (DPs) shows that lindane follows similar degradation pathways in natural water samples as the one in Milli-Q water. The results show that the occurrence of lindane in surface waters of Peshawar valley is a matter of great concern for human beings and the environment. Interestingly, H2O2 and PS assisted solar/TiO2 photocatalysis is an effective method for the removal of lindane from natural water.

12.
Crit Rev Food Sci Nutr ; : 1-17, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37395659

RESUMEN

Food factories seek the application of natural products, green feedstock and eco-friendly processes, which minimally affect the properties of the food item and products. Today, water and conventional polar solvents are used in many areas of food science and technology. As modern chemistry evolves, new green items for building eco-friendly processes are being developed. This is the case of deep eutectic solvents (DESs), named the next generation of green solvents, which can be involved in many food industries. In this review, we timely analyzed the progress on applying DES toward the development of formulations, extraction of target biomolecules, food processing, extraction of undesired molecules, analysis and determination of specific analytes in food samples (heavy metals, pesticides), food microbiology, and synthesis of new packaging materials, among many other applications. For this, the latest developments (over the last 2-3 years) have been discussed emphasizing innovative ideas and outcomes. Relevantly, we discuss the hypothesis and the key features of using DES in the mentioned applications. To some extent, the advantages and limitations of implementing DES in the food industry are also elucidated. Finally, based on the findings of this review, the perspectives, research gaps and potentialities of DESs are stated.

13.
Food Chem ; 425: 136523, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37295209

RESUMEN

A new polyoleic acid-polystyrene (PoleS) block/graft copolymer was synthesized and applied as adsorbent for ultrasound assisted dispersive solid phase microextraction (UA-DSPME) of Sb(III) in different bottled beverages and analysis using hydride generation atomic absorption spectrometry (HGAAS). Adsorption capacity of the PoleS was 150 mg g-1. Several sample preparation parameters such as sorbent amount, solvent type, pH, sample volume and shaking time were optimized (based on central composite design (CCD) approach) and evaluated in respect to the recovery of Sb(III). The method revealed a high tolerance limit of matrix ions presence. Under optimized conditions, linearity range, the limit of detection, the limit of quantitation, extraction recovery, enhancement factor, preconcentration factor were 5-800 ng L-1, 1.5 ng L-1, 5.0 ng L-1, 96%, 82, 90, respectively. Accuracy of the UA-DSPME method was confirmed based on different certified reference materials and standard addition method. Factorial design was utilized to estimate the influences of variables of recovery of Sb(III).


Asunto(s)
Microextracción en Fase Líquida , Microextracción en Fase Sólida , Microextracción en Fase Sólida/métodos , Poliestirenos/química , Espectrofotometría Atómica/métodos , Bebidas/análisis , Polímeros/análisis , Límite de Detección
14.
Environ Res ; 231(Pt 3): 116241, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37244493

RESUMEN

In this work, lanthanum ferrite nanoparticles were synthesized via a simple co-precipitation method. Two different templates, namely sorbitol and mannitol, were used in this synthesis to tune the optical, structural, morphological, and photocatalytic properties of lanthanum ferrite. The synthesized lanthanum ferrite-sorbitol (LFOCo-So) and lanthanum ferrite-mannitol (LFOCo-Mo) were investigated through Ultraviolet-Visible (UV-Vis), X-ray diffraction (XRD), Fourier Transform Infra-Red (FTIR), Raman, Scanning Electron Microscopy-Energy Dispersive X-ray (SEM-EDX), and photoluminescence (PL) techniques to study the effects of the templates on the tunable properties of lanthanum ferrite nanoparticles. The UV-Vis study revealed a remarkably small bandgap (2.09 eV) of LFOCo-So compared to the LFOCo-Mo having a band gap of 2.46 eV. XRD analysis revealed a single-phased structure of LFOCo-So, whereas LFOCo-Mo showed different phases. The calculated crystallite sizes of LFOCo-So and LFOCo-Mo were 22 nm and 39 nm, respectively. FTIR spectroscopy indicated the characteristics of metal-oxygen vibrations of perovskites in both lanthanum ferrite (LFO) nanoparticles, whereas a slight shifting of Raman scattering modes in LFOCo-Mo in contrast to LFOCo-So showed the octahedral distortion of the perovskite by changing the template. SEM micrographs indicated porous particles of lanthanum ferrite with LFOCo-So being more uniformly distributed, and EDX confirmed the stoichiometric ratios of the lanthanum, iron, and oxygen in the fabricated lanthanum ferrite. The high-intensity green emission in the photoluminescence spectrum of LFOCo-So indicated more prominent oxygen vacancies than LFOCo-Mo. The photocatalytic efficiency of synthesized LFOCo-So and LFOCo-Mo was investigated against cefadroxil drug under solar light irradiation. At optimized photocatalytic conditions, LFOCo-So showed higher degradation efficiency of 87% in only 20 min than LFOCo-Mo having photocatalytic activity of 81%. The excellent recyclability of the LFOCo-So reflected that it could be reused without affecting photocatalytic efficiency. These findings showed that sorbitol is a useful template for the lanthanum ferrite particles imparting outstanding features, enabling it to be used as an efficient photocatalyst for environmental remediation.


Asunto(s)
Lantano , Nanopartículas , Lantano/química , Cefadroxilo , Nanopartículas/química
15.
Foods ; 12(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37174453

RESUMEN

Melissa officinalis L. is a medicinal plant used worldwide for ethno-medical purposes. Today, it is grown everywhere; while it is known to originate from Southern Europe, it is now found around the world, from North America to New Zealand. The biological properties of this medicinal plant are mainly related to its high content of phytochemical (bioactive) compounds, such as flavonoids, polyphenolic compounds, aldehydes, glycosides and terpenes, among many other groups of substances. Among the main biological activities associated with this plant are antimicrobial activity (against fungi and bacteria), and antispasmodic, antioxidant and insomnia properties. Today, this plant is still used by society (as a natural medicine) to alleviate many other illnesses and symptoms. Therefore, in this perspective, we provide an update on the phytochemical profiling analysis of this plant, as well as the relationships of specific biological and pharmacological effects of specific phytochemicals. Currently, among the organic solvents, ethanol reveals the highest effectiveness for the solvent extraction of precious components (mainly rosmarinic acid). Additionally, our attention is devoted to current developments in the extraction and fractionation of the phytochemicals of M. officinalis, highlighting the ongoing progress of the main strategies that the research community has employed. Finally, after analyzing the literature, we suggest potential perspectives in the field of sustainable extraction and purification of the phytochemical present in the plant. For instance, some research gaps concern the application of cavitation-assisted extraction processes, which can effectively enhance mass transfer while reducing the particle size of the extracted material in situ. Meanwhile, membrane-assisted processes could be useful in the fractionation and purification of obtained extracts. On the other hand, further studies should include the application of ionic liquids and deep eutectic solvents (DES), including DESs of natural origin (NADES) and hydrophobic DESs (hDES), as extraction or fractionating solvents, along with new possibilities for effective extraction related to DESs formed in situ, assisted by mechanical mixing (mechanochemistry-based approach).

16.
Chemosphere ; 329: 138552, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37003438

RESUMEN

Persistent contaminants in wastewater effluent pose a significant threat to aquatic life and are one of the most significant environmental concerns of our time. Although there are a variety of traditional methods available in wastewater treatment, including adsorption, coagulation, flocculation, ion exchange, membrane filtration, co-precipitation and solvent extraction, none of these have been found to be significantly cost-effective in removing toxic pollutants from the water environment. The upfront costs of these treatment methods are extremely high, and they require the use of harmful synthetic chemicals. For this reason, the development of new technologies for the treatment and recycling of wastewater is an absolute necessity. Our way of life can be made more sustainable by the synthesis of adsorbents based on biomass, making the process less harmful to the environment. Biopolymers offer a sustainable alternative to synthetic polymers, which are manufactured by joining monomer units through covalent bonding. This review presents a detailed classification of biopolymers such as pectin, alginate, chitosan, lignin, cellulose, chitin, carrageen, certain proteins, and other microbial biomass compounds and composites, with a focus on their sources, methods of synthesis, and prospective applications in wastewater treatment. A concise summary of the extensive body of knowledge on the fate of biopolymers after adsorption is also provided. Finally, consideration is given to open questions about future developments leading to environmentally friendly and economically beneficial applications of biopolymers.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Biopolímeros/química , Celulosa/química , Quitina , Agua , Contaminantes Químicos del Agua/química , Adsorción
17.
Membranes (Basel) ; 13(4)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37103878

RESUMEN

The scope of this research aims at merging a new deep eutectic mixture (DES) into a biopolymer-based membrane for a pervaporation application in dehydrating ethanol. Herein, an L-proline:xylitol (at 5:1) eutectic mixture was successfully synthesized and blended with chitosan (CS). A complete characterization of the hybrid membranes, in terms of morphology, solvent uptake, and hydrophilicity, has been conducted. As part of their applicability, the blended membranes were assayed for their ability to separate water from ethanolic solutions by means of pervaporation. At the highest temperature (50 °C), a water permeation of ca. 0.46 kg m-2 h-1 was acquired, representing a higher permeation than the pristine CS membranes (ca. 0.37 kg m-2 h-1). Therefore, CS membranes demonstrated an enhanced water permeation thanks to their blending with the hydrophilic L-proline:xylitol agent, making these membranes a good candidate for other separations containing polar solvents.

18.
J Environ Manage ; 338: 117781, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37015143

RESUMEN

This study presents a systematic study on sequential treatment of highly resistant landfill leachate by electrocoagulation (EC)/aeration, sulfate radical advanced oxidation process (SR-AOP) and electro-Fenton (EF). In case of SR-AOP, peroxymonosulfate (PMS) catalyzed by zero valent iron (ZVI) and ultraviolet irradiation (UV) system was developed. Treatment process was optimized in respect to COD removal. Analysis of results revealed that sequential application of EC/aeration, PMS/ZVI/UV, and EF processes provide an extraordinary performance and meet the environmental regulations. The source of iron for EF process was provided from previous process reducing the cost of sequential process. Separately, EC/aeration (inlet COD = 4040 mg/L), PMS/ZVI/UV (inlet COD = 1560 mg/L), and EF (inlet COD = 471 mg/L) removed 61, 69 and 82% of COD respectively. Overall, sequential processes of EC/aeration, PMS/ZVI/UV and EF could remove the COD, TOC and ammonia of the landfill leachate around 98%, 93% and 94%, respectively. The comparison of different sequences of following processes indicated that current configuration (EC/aeration-PMS/ZVI/UV-EF) could meet the discharge standards. Furthermore, humification degree was significantly improved after oxidative processes. Biodegradability study was also performed by means of BOD/COD, average oxidation state (AOS), and Zahn-Wellens test, and the best results associated with these indices were obtained 0.56, 2.37, and over 98%, respectively. Phytotoxicity of leachate was remarkably reduced and the final effluent can be considered as a non-phytotoxic wastewater.


Asunto(s)
Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Hierro , Peróxido de Hidrógeno , Oxidación-Reducción , Electrocoagulación
19.
Chemosphere ; 330: 138633, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37030343

RESUMEN

Rapid urbanization is increasing the world's energy demand, making it necessary to develop alternative energy sources. These growing energy needs can be met by the efficient energy conversion of biomass, which can be done by various means. The use of effective catalysts to transform different types of biomasses will be a paradigm change on the road to the worldwide goal of economic sustainability and environmental protection. The development of alternative energy from biomass is not easy, due to the uneven and complex components present in lignocellulose; accordingly, the majority of biomass is currently processed as waste. The problems may be overcome by the design of multifunctional catalysts, offering adequate control over product selectivity and substrate activation. Hence, this review describes recent developments involving various catalysts such as metallic oxides, supported metal or composite metal oxides, char-based and carbon-based substances, metal carbides and zeolites, with reference to the catalytic conversion of biomass including cellulose, hemicellulose, biomass tar, lignin and their derivative compounds into useful products, including bio-oil, gases, hydrocarbons, and fuels. The main aim is to provide an overview of the latest work on the use of catalysts for successful conversion of biomass. The review ends with conclusions and suggestions for future research, which will assist researchers in utilizing these catalysts for the safe conversion of biomass into valuable chemicals and other products.


Asunto(s)
Biocombustibles , Lignina , Biomasa , Lignina/química , Óxidos/química , Catálisis
20.
Sci Total Environ ; 876: 162551, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36878295

RESUMEN

Ultrasound as a clean, efficient, and cheap technique gains special attention in wastewater treatment. Ultrasound alone or coupled with hybrid processes have been widely studied for the treatment of pollutants in wastewater. Thus, it is essential to conduct a review about the research development and trends on this emerging technique. This work presents a bibliometric analysis of the topic associated with multiple tools such as Bibliometrix package, CiteSpace, and VOSviewer. The literature sources from 2000 to 2021 were collected from Web of Science database, and the data of 1781 documents were selected for bibliometric analysis in respect to publication trends, subject categories, journals, authors, institutions, as well as countries. Detailed analysis of keywords in respect to co-occurrence network, keyword clusters, and citation bursts was conducted to reveal the research hotspot and future directions. The development of the topic can be divided into three stages, and the rapid development begins from 2014. The leading subject category is Chemistry Multidisciplinary, followed by Environmental Sciences, Engineering Chemical, Engineering Environmental, Chemistry Physical, and Acoustics, and there exists difference in the publications of different categories. Ultrasonics Sonochemistry is the most productive journal (14.75 %). China is the leading country (30.26 %), followed by Iran (15.67 %) and India (12.35 %). The top 3 authors are Parag Gogate, Oualid Hamdaoui, and Masoud Salavati-Niasari. There exists close cooperation between countries and researchers. Analysis of highly cited papers and keywords gives a better understanding of the topic. Ultrasound can be employed to assist various processes such as Fenton-like process, electrochemical process, and photocatalysis for degradation of emerging organic pollutants for wastewater treatment. Research topics in this field evolve from typical studies on ultrasonic assisted degradation to latest studies on hybrid processes including photocatalysis for pollutants degradation. Additionally, ultrasound-assisted synthesis of nanocomposite photocatalysts receives increasing attention. The potential research directions include sonochemistry in pollutant removal, hydrodynamic cavitation, ultrasound-assisted Fenton or persulfate processes, electrochemical oxidation, and photocatalytic process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...