Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Autoimmun ; 131: 102857, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35780036

RESUMEN

Dysregulated T-cell activation is a hallmark of several autoimmune diseases such as rheumatoid arthritis (RA) and multiple sclerosis (MS). The lymphocyte cytosolic protein 2 (LCP2), also known as SLP-76, is essential for the development and activation of T cells. Despite the critical role of LCP2 in T-cell activation and the need for developing drugs that modify T-cell activation, no LCP2 inhibitors have been developed. This can be explained by the "undruggable" nature of LCP2, lacking a structure permissive to standard small molecule inhibitor modalities. Here, we explored an alternative drug modality, developing antisense oligonucleotides (ASOs) targeting LCP2 mRNAs, and evaluated its activity in modulating T-cell activation. We identified a set of 3' UTR targeting LCP2 ASOs, which knocked down LCP2 in a human T-cell line and primary human T cells and found that these suppressed T-cell receptor mediated activation. We also found that the ASOs suppressed FcεR1-mediated mast cell activation, in line with the role of LCP2 in mast cells. Taken together, our data provide examples of how immunomodulatory ASOs that interfere with undruggable targets can be developed and propose that such drug modalities can be used to treat autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes , Oligonucleótidos Antisentido , Línea Celular , Humanos , Activación de Linfocitos , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Linfocitos T
2.
Cancer Res ; 82(1): 36-45, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34750099

RESUMEN

Inactivating p53 mutations are the most abundant genetic alterations found in cancer. Here we show that CRISPR/Cas9-induced double-stranded DNA breaks enrich for cells deficient in p53 and in genes of a core CRISPR-p53 tumor suppressor interactome. Such enrichment could predispose to cancer development and thus pose a challenge for clinical CRISPR use. Transient p53 inhibition could suppress the enrichment of cells with these mutations. The level of DNA damage response induced by an sgRNA influenced the enrichment of p53-deficient cells and could be a relevant parameter in sgRNA design to limit cellular enrichment. Furthermore, a dataset of >800 human cancer cell lines identified additional factors influencing the enrichment of p53-mutated cells, including strong baseline CDKN1A expression as a predictor for an active CRISPR-p53 axis. Taken together, these data provide details about p53 biology in the context of CRISPR-induced DNA damage and identify strategies to enable safer CRISPR use. SIGNIFICANCE: CRISPR-mediated DNA damage enriches for cells with escape mutations in a core CRISPR-p53 interactome, which can be suppressed by transient inhibition of p53.


Asunto(s)
Sistemas CRISPR-Cas/genética , Daño del ADN/genética , Proteína p53 Supresora de Tumor/genética , Animales , Línea Celular Tumoral , Humanos , Ratones , Mutación , Transfección
3.
Comput Struct Biotechnol J ; 19: 5360-5370, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745454

RESUMEN

CRISPR/Cas9 can be used as an experimental tool to inactivate genes in cells. However, a CRISPR-targeted cell population will not show a uniform genotype of the targeted gene. Instead, a mix of genotypes is generated - from wild type to different forms of insertions and deletions. Such mixed genotypes complicate analysis of the role of the targeted gene in the studied cell population. Here, we present a rapid and universal experimental approach to functionally analyze a CRISPR-targeted cell population that does not involve generating clonal lines. As a simple readout, we leverage the CRISPR-induced genetic heterogeneity and use sequencing to identify how different genotypes are enriched or depleted in relation to the studied cellular behavior or phenotype. The approach uses standard PCR, Sanger sequencing, and a simple sequence deconvoluting software, enabling laboratories without specific in-depth experience to perform these experiments. As proof of principle, we present examples studying various aspects related to hematopoietic cells (T cell development in vivo and activation in vitro, differentiation of macrophages and dendritic cells, as well as a leukemia-like phenotype induced by overexpressing a proto-oncogene). In conclusion, we present a rapid experimental approach to identify potential drug targets related to mature immune cells, as well as normal and malignant hematopoiesis.

4.
J Transl Autoimmun ; 4: 100087, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33768201

RESUMEN

Recent advances in single-cell sequencing technologies enable the generation of large-scale data sets of paired TCR sequences from patients with autoimmune disease. Methods to validate and characterize patient-derived TCR data are needed, as well as relevant model systems that can support the development of antigen-specific tolerance inducing drugs. We have generated a pipeline to allow streamlined generation of 'artificial' T cells in a robust and reasonably high throughput manner for in vitro and in vivo studies of antigen-specific and patient-derived immune responses. Hereby chimeric (mouse-human) TCR alpha and beta constructs are re-expressed in three different formats for further studies: (i) transiently in HEK cells for peptide-HLA tetramer validation experiments, (ii) stably in the TCR-negative 58 â€‹T cell line for functional readouts such as IL-2 production and NFAT-signaling, and lastly (iii) in human HLA-transgenic mice for studies of autoimmune disease and therapeutic interventions. As a proof of concept, we have used human HLA-DRB1∗04:01 restricted TCR sequences specific for a type I diabetes-associated GAD peptide, and an influenza-derived HA peptide. We show that the same chimeric TCR constructs can be used in each of the described assays facilitating sequential validation and prioritization steps leading to humanized animal models.

5.
Comput Struct Biotechnol J ; 18: 2237-2246, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32952937

RESUMEN

Over the last decade Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) has been developed into a potent molecular biology tool used to rapidly modify genes or their expression in a multitude of ways. In parallel, CRISPR-based screening approaches have been developed as powerful discovery platforms for dissecting the genetic basis of cellular behavior, as well as for drug target discovery. CRISPR screens can be designed in numerous ways. Here, we give a brief background to CRISPR screens and discuss the pros and cons of different design approaches, including unbiased genome-wide screens that target all known genes, as well as hypothesis-driven custom screens in which selected subsets of genes are targeted (Fig. 1). We provide several suggestions for how a custom screen can be designed, which could broadly serve as inspiration for any experiment that includes candidate gene selection. Finally, we discuss how results from CRISPR screens could be translated into drug development, as well as future trends we foresee in the rapidly evolving CRISPR screen field.

6.
Proc Natl Acad Sci U S A ; 117(6): 3103-3113, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31980518

RESUMEN

Neutrophils are the most abundant immune cells found in actively inflamed joints of patients with rheumatoid arthritis (RA), and most animal models for RA depend on neutrophils for the induction of joint inflammation. Exogenous IL-4 and IL-13 protect mice from antibody-mediated joint inflammation, although the mechanism is not understood. Neutrophils display a very strong basal expression of STAT6, which is responsible for signaling following exposure to IL-4 and IL-13. Still, the role of IL-4 and IL-13 in neutrophil biology has not been well studied. This can be explained by the low neutrophil surface expression of the IL-4 receptor α-chain (IL-4Rα), essential for IL-4- and IL-13-induced STAT6 signaling. Here we identify that colony stimulating factor 3 (CSF3), released during acute inflammation, mediates potent STAT3-dependent neutrophil IL-4Rα up-regulation during sterile inflammatory conditions. We further demonstrate that IL-4 limits neutrophil migration to inflamed joints, and that CSF3 combined with IL-4 or IL-13 results in a prominent neutrophil up-regulation of the inhibitory Fcγ receptor (FcγR2b). Taking these data together, we demonstrate that the IL-4 and CSF3 pathways are linked and play important roles in regulating proinflammatory neutrophil behavior.


Asunto(s)
Artritis/metabolismo , Interleucina-4 , Infiltración Neutrófila/fisiología , Neutrófilos/metabolismo , Receptores de IgG/metabolismo , Animales , Modelos Animales de Enfermedad , Interleucina-4/genética , Interleucina-4/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...