Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
EMBO Rep ; 23(10): e55502, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35971894

RESUMEN

Hematopoietic stem cells (HSCs) cultured outside the body are the fundamental component of a wide range of cellular and gene therapies. Recent efforts have achieved > 200-fold expansion of functional HSCs, but their molecular characterization has not been possible since the majority of cells are non-HSCs and single cell-initiated cultures have substantial clone-to-clone variability. Using the Fgd5 reporter mouse in combination with the EPCR surface marker, we report exclusive identification of HSCs from non-HSCs in expansion cultures. By directly linking single-clone functional transplantation data with single-clone gene expression profiling, we show that the molecular profile of expanded HSCs is similar to proliferating fetal HSCs and reveals a gene expression signature, including Esam, Prdm16, Fstl1, and Palld, that can identify functional HSCs from multiple cellular states. This "repopulation signature" (RepopSig) also enriches for HSCs in human datasets. Together, these findings demonstrate the power of integrating functional and molecular datasets to better derive meaningful gene signatures and opens the opportunity for a wide range of functional screening and molecular experiments previously not possible due to limited HSC numbers.


Asunto(s)
Proteínas Relacionadas con la Folistatina , Animales , Células Cultivadas , Receptor de Proteína C Endotelial/metabolismo , Proteínas Relacionadas con la Folistatina/metabolismo , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones , Factores de Transcripción/metabolismo
2.
Front Immunol ; 12: 702636, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34322133

RESUMEN

Single-cell molecular tools have been developed at an incredible pace over the last five years as sequencing costs continue to drop and numerous molecular assays have been coupled to sequencing readouts. This rapid period of technological development has facilitated the delineation of individual molecular characteristics including the genome, transcriptome, epigenome, and proteome of individual cells, leading to an unprecedented resolution of the molecular networks governing complex biological systems. The immense power of single-cell molecular screens has been particularly highlighted through work in systems where cellular heterogeneity is a key feature, such as stem cell biology, immunology, and tumor cell biology. Single-cell-omics technologies have already contributed to the identification of novel disease biomarkers, cellular subsets, therapeutic targets and diagnostics, many of which would have been undetectable by bulk sequencing approaches. More recently, efforts to integrate single-cell multi-omics with single cell functional output and/or physical location have been challenging but have led to substantial advances. Perhaps most excitingly, there are emerging opportunities to reach beyond the description of static cellular states with recent advances in modulation of cells through CRISPR technology, in particular with the development of base editors which greatly raises the prospect of cell and gene therapies. In this review, we provide a brief overview of emerging single-cell technologies and discuss current developments in integrating single-cell molecular screens and performing single-cell multi-omics for clinical applications. We also discuss how single-cell molecular assays can be usefully combined with functional data to unpick the mechanism of cellular decision-making. Finally, we reflect upon the introduction of spatial transcriptomics and proteomics, its complementary role with single-cell RNA sequencing (scRNA-seq) and potential application in cellular and gene therapy.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Terapia Genética/métodos , Análisis de la Célula Individual/métodos , Animales , Tratamiento Basado en Trasplante de Células y Tejidos/tendencias , Terapia Genética/tendencias , Humanos , Análisis de la Célula Individual/tendencias
3.
Stem Cell Reports ; 16(6): 1614-1628, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33961793

RESUMEN

Advances in the isolation and gene expression profiling of single hematopoietic stem cells (HSCs) have permitted in-depth resolution of their molecular program. However, long-term HSCs can only be isolated to near purity from adult mouse bone marrow, thereby precluding studies of their molecular program in different physiological states. Here, we describe a powerful 7-day HSC hibernation culture system that maintains HSCs as single cells in the absence of a physical niche. Single hibernating HSCs retain full functional potential compared with freshly isolated HSCs with respect to colony-forming capacity and transplantation into primary and secondary recipients. Comparison of hibernating HSC molecular profiles to their freshly isolated counterparts showed a striking degree of molecular similarity, further resolving the core molecular machinery of HSC self-renewal while also identifying key factors that are potentially dispensable for HSC function, including members of the AP1 complex (Jun, Fos, and Ncor2), Sult1a1 and Cish. Finally, we provide evidence that hibernating mouse HSCs can be transduced without compromising their self-renewal activity and demonstrate the applicability of hibernation cultures to human HSCs.


Asunto(s)
Arilsulfotransferasa/metabolismo , Técnicas de Cultivo de Célula/métodos , Células Madre Hematopoyéticas/fisiología , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Factor de Transcripción AP-1/metabolismo , Transcriptoma , Animales , Trasplante de Médula Ósea/métodos , Ciclo Celular , Diferenciación Celular , Células Cultivadas , Citocinas/metabolismo , Hibernación , Ratones , Ratones Endogámicos C57BL , Complejos Multiproteicos/metabolismo , Análisis de la Célula Individual , Nicho de Células Madre
4.
Genome Res ; 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29429976

RESUMEN

Thrombopoietin (TPO) is a critical cytokine regulating hematopoietic stem cell maintenance and differentiation into the megakaryocytic lineage. However, the transcriptional and chromatin dynamics elicited by TPO signaling are poorly understood. Here, we study the immediate early transcriptional and cis-regulatory responses to TPO in hematopoietic stem/progenitor cells (HSPCs) and use this paradigm of cytokine signaling to chromatin to dissect the relation between cis- regulatory activity and chromatin architecture. We show that TPO profoundly alters the transcriptome of HSPCs, with key hematopoietic regulators being transcriptionally repressed within 30 minutes of TPO. By examining cis-regulatory dynamics and chromatin architectures, we demonstrate that these changes are accompanied by rapid and extensive epigenome remodeling of cis-regulatory landscapes that is spatially coordinated within topologically associating domains (TADs). Moreover, TPO-responsive enhancers are spatially clustered and engage in preferential homotypic intra- and inter-TAD interactions that are largely refractory to TPO signaling. By further examining the link between cis-regulatory dynamics and chromatin looping, we show that rapid modulation of cis-regulatory activity is largely independent of chromatin looping dynamics. Finally, we show that, although activated and repressed cis-regulatory elements share remarkably similar DNA sequence compositions, transcription factor binding patterns accurately predict rapid cis-regulatory responses to TPO.

5.
Sci Rep ; 7(1): 8157, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28811661

RESUMEN

MYST histone acetyltransferases have crucial functions in transcription, replication and DNA repair and are hence implicated in development and cancer. Here we characterise Myst2/Kat7/Hbo1 protein interactions in mouse embryonic stem cells by affinity purification coupled to mass spectrometry. This study confirms that in embryonic stem cells Myst2 is part of H3 and H4 histone acetylation complexes similar to those described in somatic cells. We identify a novel Myst2-associated protein, the tumour suppressor protein Niam (Nuclear Interactor of ARF and Mdm2). Human NIAM is involved in chromosome segregation, p53 regulation and cell proliferation in somatic cells, but its role in embryonic stem cells is unknown. We describe the first Niam embryonic stem cell interactome, which includes proteins with roles in DNA replication and repair, transcription, splicing and ribosome biogenesis. Many of Myst2 and Niam binding partners are required for correct embryonic development, implicating Myst2 and Niam in the cooperative regulation of this process and suggesting a novel role for Niam in embryonic biology. The data provides a useful resource for exploring Myst2 and Niam essential cellular functions and should contribute to deeper understanding of organism early development and survival as well as cancer. Data are available via ProteomeXchange with identifier PXD005987.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/metabolismo , Histona Acetiltransferasas/metabolismo , Proteoma , Proteómica , Acetilación , Alelos , Animales , Proteínas Portadoras/metabolismo , Proliferación Celular , Ensamble y Desensamble de Cromatina , Biología Computacional/métodos , Femenino , Redes Reguladoras de Genes , Masculino , Espectrometría de Masas , Ratones , Ratones Noqueados , Células Madre Pluripotentes/metabolismo , Unión Proteica , Proteómica/métodos
6.
J Vis Exp ; (122)2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28447986

RESUMEN

Most proteins act in association with others; hence, it is crucial to characterize these functional units in order to fully understand biological processes. Affinity purification coupled to mass spectrometry (AP-MS) has become the method of choice for identifying protein-protein interactions. However, conventional AP-MS studies provide information on protein interactions, but the organizational information is lost. To address this issue, we developed a strategy to unravel the distinct functional assemblies a protein might be involved in, by resolving affinity-purified protein complexes prior to their characterization by mass spectrometry. Protein complexes isolated through affinity purification of a bait protein using an epitope tag and competitive elution are separated through blue native electrophoresis. Comparison of protein migration profiles through correlation profiling using quantitative mass spectrometry allows assignment of interacting proteins to distinct molecular entities. This method is able to resolve protein complexes of close molecular weights that might not be resolved by traditional chromatographic techniques such as gel filtration. With little more work than conventional AP-geLC-MS/MS, we demonstrate this strategy may in many cases be adequate for obtaining protein complex topological information concomitantly to identifying protein interactions.


Asunto(s)
Electroforesis en Gel de Poliacrilamida Nativa/métodos , Proteínas/aislamiento & purificación , Animales , Cromatografía de Afinidad , Ratones , Proteínas/química , Proteínas/metabolismo , Espectrometría de Masas en Tándem
7.
Mol Cell Proteomics ; 15(3): 878-91, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26714524

RESUMEN

Pluripotency and self-renewal, the defining properties of embryonic stem cells, are brought about by transcriptional programs involving an intricate network of transcription factors and chromatin remodeling complexes. The Nucleosome Remodeling and Deacetylase (NuRD) complex plays a crucial and dynamic role in the regulation of stemness and differentiation. Several NuRD-associated factors have been reported but how they are organized has not been investigated in detail. Here, we have combined affinity purification and blue native polyacrylamide gel electrophoresis followed by protein identification by mass spectrometry and protein correlation profiling to characterize the topology of the NuRD complex. Our data show that in mouse embryonic stem cells the NuRD complex is present as two distinct assemblies of differing topology with different binding partners. Cell cycle regulator Cdk2ap1 and transcription factor Sall4 associate only with the higher mass NuRD assembly. We further establish that only isoform Sall4a, and not Sall4b, associates with NuRD. By contrast, Suz12, a component of the PRC2 Polycomb repressor complex, associates with the lower mass entity. In addition, we identify and validate a novel NuRD-associated protein, Wdr5, a regulatory subunit of the MLL histone methyltransferase complex, which associates with both NuRD entities. Bioinformatic analyses of published target gene sets of these chromatin binding proteins are in agreement with these structural observations. In summary, this study provides an interesting insight into mechanistic aspects of NuRD function in stem cell biology. The relevance of our work has broader implications because of the ubiquitous nature of the NuRD complex. The strategy described here can be more broadly applicable to investigate the topology of the multiple complexes an individual protein can participate in.


Asunto(s)
Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/química , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/aislamiento & purificación , Células Madre Embrionarias de Ratones/metabolismo , Nucleosomas/metabolismo , Animales , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Espectrometría de Masas/métodos , Ratones , Electroforesis en Gel de Poliacrilamida Nativa/métodos , Complejo Represivo Polycomb 2/metabolismo , Unión Proteica , Proteínas Quinasas/metabolismo , Proteínas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA