Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38906846

RESUMEN

AIM: This study aimed to overproduce industrially relevant and safe bio-compound trans-cinnamic acid (tCA) from Photorhabdus luminescens with deletion strategies and homologous expression strategies that had not been applied before for tCA production. METHODS AND RESULTS: The overproduction of the industrially relevant compound tCA was successfully performed in P. luminescens by deleting stlB (TTO1ΔstlB) encoding a cinnamic acid CoA ligase in the isopropylstilbene pathway and the hcaE insertion (knockout) mutation (hcaE::cat) in the phenylpropionate catabolic pathway, responsible for tCA degradation. A double mutant of both stlB deletion and hcaE insertion mutation (TTO1DM ΔstlB-hcaE::cat) was also generated. These deletion strategies and the phenylalanine ammonium lyase-producing (PI-PAL from Photorhabdus luminescens) plasmid, pBAD30C, carrying stlA (homologous expression mutants) are utilized together in the same strain using different media, a variety of cultivation conditions, and efficient anion exchange resin (Amberlite IRA402) for enhanced tCA synthesis. At the end of the 120-h shake flask cultivation, the maximum tCA production was recorded as 1281 mg l-1 in the TTO1pBAD30C mutant cultivated in TB medium, with the IRA402 resin keeping 793 mg l-1 and the remaining 488 mg l-1 found in the supernatant. CONCLUSION: TCA production was successfully achieved with homologous expression, coupled with deletion and insertion strategies. 1281 mg l-1is the highest tCA concentration that achieved by bacterial tCA production in flask cultivation, according to our knowledge.


Asunto(s)
Cinamatos , Photorhabdus , Photorhabdus/genética , Photorhabdus/metabolismo , Cinamatos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Eliminación de Gen , Plásmidos/genética
2.
J Invertebr Pathol ; 205: 108126, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38734162

RESUMEN

Aedes-transmitted arboviral infections such as Dengue, Yellow Fever, Zika and Chikungunya are increasing public health problems. Xenorhabdus and Photorhabdus bacteria are promising sources of effective compounds with important biological activities. This study investigated the effects of cell-free supernatants of X. szentirmaii, X. cabanillasii and P. kayaii against Ae. aegypti eggs and larvae and identified the bioactive larvicidal compound in X. szentirmaii using The EasyPACId method. Among the three tested bacterial species, X. cabanillasii exhibited the highest (96%) egg hatching inhibition and larvicidal activity (100% mortality), whereas P. kayaii was the least effective species in our study. EasyPACId method revealed that bioactive larvicidal compound in the bacterial supernatant was fabclavine. Fabclavines obtained from promoter exchange mutants of different bacterial species such as X. cabanillasii, X. budapestensis, X. indica, X. szentirmaii, X. hominckii and X. stockiae were effective against mosquito larvae. Results show that these bacterial metabolites have potential to be used in integrated pest management (IPM) programmes of mosquitoes.


Asunto(s)
Aedes , Larva , Photorhabdus , Xenorhabdus , Animales , Aedes/efectos de los fármacos , Aedes/microbiología , Larva/microbiología , Larva/efectos de los fármacos , Xenorhabdus/metabolismo , Óvulo/efectos de los fármacos , Óvulo/microbiología , Control de Mosquitos/métodos , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/microbiología , Control Biológico de Vectores/métodos , Insecticidas/farmacología
3.
Angew Chem Int Ed Engl ; : e202406389, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801753

RESUMEN

The recently identified natural product NOSO-95A from entomopathogenic Xenorhabdus bacteria, derived from a biosynthetic gene cluster (BGC) encoding a non-ribosomal peptide synthetase (NRPS), was the first member of the odilorhabdin class of antibiotics. This class exhibits broad-spectrum antibiotic activity and inspired the development of the synthetic derivative NOSO-502, which holds potential as a new clinical drug by breaking antibiotic resistance. While the mode of action of odilorhabdins was broadly investigated, their biosynthesis pathway remained poorly understood. Here we describe the heterologous production of NOSO-95A in Escherichia coli after refactoring the complete BGC. Since the production titer was low, NRPS engineering was applied to uncover the underlying biosynthetic principles. For this, modules of the odilorhabdin NRPS fused to other synthetases were co-expressed with candidate hydroxylases encoded in the BGC allowing the characterization of the biosynthesis of three unusual amino acids and leading to the identification of a prodrug-activation mechanism by deacylation. Our work demonstrates the application of NRPS engineering as a blueprint to mechanistically elucidate large or toxic NRPS and provides the basis to generate novel odilorhabdin analogues with improved properties in the future.

4.
Microb Cell Fact ; 23(1): 98, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561780

RESUMEN

BACKGROUND: Bacteria of the genus Photorhabdus and Xenorhabdus are motile, Gram-negative bacteria that live in symbiosis with entomopathogenic nematodes. Due to their complex life cycle, they produce a large number of specialized metabolites (natural products) encoded in biosynthetic gene clusters (BGC). Genetic tools for Photorhabdus and Xenorhabdus have been rare and applicable to only a few strains. In the past, several tools have been developed for the activation of BGCs and the deletion of individual genes. However, these often have limited efficiency or are time consuming. Among the limitations, it is essential to have versatile expression systems and genome editing tools that could facilitate the practical work. RESULTS: In the present study, we developed several expression vectors and a CRISPR-Cpf1 genome editing vector for genetic manipulations in Photorhabdus and Xenorhabdus using SEVA plasmids. The SEVA collection is based on modular vectors that allow exchangeability of different elements (e.g. origin of replication and antibiotic selection markers with the ability to insert desired sequences for different end applications). Initially, we tested different SEVA vectors containing the broad host range origins and three different resistance genes for kanamycin, gentamycin and chloramphenicol, respectively. We demonstrated that these vectors are replicative not only in well-known representatives, e.g. Photorhabdus laumondii TTO1, but also in other rarely described strains like Xenorhabdus sp. TS4. For our CRISPR/Cpf1-based system, we used the pSEVA231 backbone to delete not only small genes but also large parts of BGCs. Furthermore, we were able to activate and refactor BGCs to obtain high production titers of high value compounds such as safracin B, a semisynthetic precursor for the anti-cancer drug ET-743. CONCLUSIONS: The results of this study provide new inducible expression vectors and a CRISPR/CPf1 encoding vector all based on the SEVA (Standard European Vector Architecture) collection, which can improve genetic manipulation and genome editing processes in Photorhabdus and Xenorhabdus.


Asunto(s)
Productos Biológicos , Photorhabdus , Xenorhabdus , Xenorhabdus/genética , Xenorhabdus/metabolismo , Photorhabdus/genética , Edición Génica , Productos Biológicos/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas
5.
Pest Manag Sci ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619291

RESUMEN

BACKGROUND: In the perpetual struggle to manage mosquito populations, there has been increasing demand for the development of biopesticides to supplant/complement current products. The insecticidal potential of Xenorhabdus and Photorhabdus has long been recognized and is of interest for the control of important mosquitoes like Aedes albopictus which vectors over 20 different arboviruses of global public health concern. RESULTS: The larvicidal effects of cell-free supernatants, cell growth cultures and cell mass of an extensive list of Xenorhabdus and Photorhabdus spp. was investigated. They were quite effective against Ae. albopictus causing larval mortality ranging between 52-100%. Three Photorhabdus spp. and 13 Xenorhabdus spp. release larvicidal compounds in cell-free supernatants. Cell growth culture of all tested species exhibited larvicidal activity, except for Xenorhabdus sp. TS4. Twenty-one Xenorhabdus and Photorhabdus bacterial cells (pellet) exhibited oral toxicity (59-91%) against exposed larvae. The effect of bacterial supernatants on the mosquito eggs were also assessed. Bacterial supernatants inhibited the hatching of mosquito eggs; when unhatched eggs were transferred to clean water, they all hatched. Using the easyPACId approach, the larvicidal compounds in bacterial supernatant were identified as fabclavine from X. szentirmaii and xencoumacin from X. nematophila (causing 98 and 70% mortality, respectively, after 48 h). Xenorhabdus cabanillasii and X. hominickii fabclavines were as effective as commercial Bacillus thuringiensis subsp. israelensis and spinosad products within 5 days post-application (dpa). CONCLUSION: Fabclavine and xenocoumacin can be developed into novel biolarvicides, can be used as a model to synthesize other compounds or/and can be combined with other commercial biolarvicides. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

6.
Adv Sci (Weinh) ; 11(22): e2400184, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38491909

RESUMEN

Pigments such as anthraquinones (AQs) and melanins are antioxidants, protectants, or virulence factors. AQs from the entomopathogenic bacterium Photorhabdus laumondii are produced by a modular type II polyketide synthase system. A key enzyme involved in AQ biosynthesis is PlAntI, which catalyzes the hydrolysis of the bicyclic-intermediate-loaded acyl carrier protein, polyketide trimming, and assembly of the aromatic AQ scaffold. Here, multiple crystal structures of PlAntI in various conformations and with bound substrate surrogates or inhibitors are reported. Structure-based mutagenesis and activity assays provide experimental insights into the three sequential reaction steps to yield the natural product AQ-256. For comparison, a series of ligand-complex structures of two functionally related hydrolases involved in the biosynthesis of 1,8-dihydroxynaphthalene-melanin in pathogenic fungi is determined. These data provide fundamental insights into the mechanism of polyketide trimming that shapes pigments in pro- and eukaryotes.


Asunto(s)
Antraquinonas , Melaninas , Policétidos , Antraquinonas/metabolismo , Policétidos/metabolismo , Melaninas/metabolismo , Sintasas Poliquetidas/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/química , Photorhabdus/metabolismo , Photorhabdus/genética , Naftoles/metabolismo , Naftoles/química , Pigmentos Biológicos/metabolismo
7.
Science ; 383(6689): eadg4320, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38513038

RESUMEN

Many clinically used drugs are derived from or inspired by bacterial natural products that often are produced through nonribosomal peptide synthetases (NRPSs), megasynthetases that activate and join individual amino acids in an assembly line fashion. In this work, we describe a detailed phylogenetic analysis of several bacterial NRPSs that led to the identification of yet undescribed recombination sites within the thiolation (T) domain that can be used for NRPS engineering. We then developed an evolution-inspired "eXchange Unit between T domains" (XUT) approach, which allows the assembly of NRPS fragments over a broad range of GC contents, protein similarities, and extender unit specificities, as demonstrated for the specific production of a proteasome inhibitor designed and assembled from five different NRPS fragments.


Asunto(s)
Proteínas Bacterianas , Evolución Molecular , Péptido Sintasas , Ingeniería de Proteínas , Péptido Sintasas/química , Péptido Sintasas/clasificación , Péptido Sintasas/genética , Filogenia , Secuencia de Aminoácidos/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Análisis de Secuencia de Proteína
8.
Toxins (Basel) ; 16(2)2024 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-38393187

RESUMEN

Entomopathogenic nematodes from the genus Steinernema (Nematoda: Steinernematidae) are capable of causing the rapid killing of insect hosts, facilitated by their association with symbiotic Gram-negative bacteria in the genus Xenorhabdus (Enterobacterales: Morganellaceae), positioning them as interesting candidate tools for the control of insect pests. In spite of this, only a limited number of species from this bacterial genus have been identified from their nematode hosts and their insecticidal properties documented. This study aimed to perform the genome sequence analysis of fourteen Xenorhabdus strains that were isolated from Steinernema nematodes in Argentina. All of the strains were found to be able of killing 7th instar larvae of Galleria mellonella (L.) (Lepidoptera: Pyralidae). Their sequenced genomes harbour 110 putative insecticidal proteins including Tc, Txp, Mcf, Pra/Prb and App homologs, plus other virulence factors such as putative nematocidal proteins, chitinases and secondary metabolite gene clusters for the synthesis of different bioactive compounds. Maximum-likelihood phylogenetic analysis plus average nucleotide identity calculations strongly suggested that three strains should be considered novel species. The species name for strains PSL and Reich (same species according to % ANI) is proposed as Xenorhabdus littoralis sp. nov., whereas strain 12 is proposed as Xenorhabdus santafensis sp. nov. In this work, we present a dual insight into the biocidal potential and diversity of the Xenorhabdus genus, demonstrated by different numbers of putative insecticidal genes and biosynthetic gene clusters, along with a fresh exploration of the species within this genus.


Asunto(s)
Mariposas Nocturnas , Nematodos , Xenorhabdus , Animales , Xenorhabdus/genética , Filogenia , Argentina , Nematodos/genética , Mariposas Nocturnas/genética , Análisis de Secuencia , Simbiosis
9.
Nat Commun ; 14(1): 7197, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938588

RESUMEN

Bioactive peptides are key molecules in health and medicine. Deep learning holds a big promise for the discovery and design of bioactive peptides. Yet, suitable experimental approaches are required to validate candidates in high throughput and at low cost. Here, we established a cell-free protein synthesis (CFPS) pipeline for the rapid and inexpensive production of antimicrobial peptides (AMPs) directly from DNA templates. To validate our platform, we used deep learning to design thousands of AMPs de novo. Using computational methods, we prioritized 500 candidates that we produced and screened with our CFPS pipeline. We identified 30 functional AMPs, which we characterized further through molecular dynamics simulations, antimicrobial activity and toxicity. Notably, six de novo-AMPs feature broad-spectrum activity against multidrug-resistant pathogens and do not develop bacterial resistance. Our work demonstrates the potential of CFPS for high throughput and low-cost production and testing of bioactive peptides within less than 24 h.


Asunto(s)
Péptidos Antimicrobianos , Aprendizaje Profundo , Replicación del ADN , Simulación de Dinámica Molecular , Biosíntesis de Proteínas
10.
Sci Rep ; 13(1): 20764, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007490

RESUMEN

The discovery of novel bioactive compounds produced by microorganisms holds significant potential for the development of therapeutics and agrochemicals. In this study, we conducted genome mining to explore the biosynthetic potential of entomopathogenic bacteria belonging to the genera Xenorhabdus and Photorhabdus. By utilizing next-generation sequencing and bioinformatics tools, we identified novel biosynthetic gene clusters (BGCs) in the genomes of the bacteria, specifically plu00736 and plu00747. These clusters were identified as unidentified non-ribosomal peptide synthetase (NRPS) and unidentified type I polyketide synthase (T1PKS) clusters. These BGCs exhibited unique genetic architecture and encoded several putative enzymes and regulatory elements, suggesting its involvement in the synthesis of bioactive secondary metabolites. Furthermore, comparative genome analysis revealed that these BGCs were distinct from previously characterized gene clusters, indicating the potential for the production of novel compounds. Our findings highlighted the importance of genome mining as a powerful approach for the discovery of biosynthetic gene clusters and the identification of novel bioactive compounds. Further investigations involving expression studies and functional characterization of the identified BGCs will provide valuable insights into the biosynthesis and potential applications of these bioactive compounds.


Asunto(s)
Bacterias , Genoma Bacteriano , Bacterias/genética , Biología Computacional , Familia de Multigenes , Vías Biosintéticas/genética
11.
Bio Protoc ; 13(13): e4709, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37449040

RESUMEN

The easyPACId (easy Promoter Activation and Compound Identification) approach is focused on the targeted activation of natural product biosynthetic gene clusters (BGCs) encoding non-ribosomal peptide synthetases (NRPS), polyketide synthases (PKS), NRPS-PKS hybrids, or other BGC classes. It was applied to entomopathogenic bacteria of the genera Xenorhabdus and Photorhabdus by exchanging the natural promoter of desired BGCs against the L-arabinose inducible PBAD promoter in ∆hfq mutants of the respective strains. The crude (culture) extracts of the cultivated easyPACId mutants are enriched with the single compound or compound class and can be tested directly against various target organisms without further purification of the produced natural products. Furthermore, isolation and identification of compounds from these mutants is simplified due to the reduced background in the ∆hfq strains. The approach avoids problems often encountered in heterologous expression hosts, chemical synthesis, or tedious extraction of desired compounds from wild-type crude extracts. This protocol describes easyPACId for Xenorhabdus and Photorhabdus, but it was also successfully adapted to Pseudomonas entomophila and might be suitable for other proteobacteria that carry hfq.

12.
ACS Synth Biol ; 12(8): 2432-2443, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37523786

RESUMEN

Bacterial biosynthetic assembly lines, such as nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), play a crucial role in the synthesis of natural products that have significant therapeutic potential. The ability to engineer these biosynthetic assembly lines offers opportunities to produce artificial nonribosomal peptides, polyketides, and their hybrids with improved properties. In this study, we introduced a synthetic NRPS variant, termed type S NRPS, which simplifies the engineering process and enables biocombinatorial approaches for generating nonribosomal peptide libraries in a parallelized high-throughput manner. However, initial generations of type S NRPSs exhibited a bottleneck that led to significantly reduced production yields. To address this challenge, we employed two optimization strategies. First, we truncated SYNZIPs from the N- and/or C-terminus of the NRPS. SYNZIPs comprise a large set of well-characterized synthetic protein interaction reagents. Second, we incorporated a structurally flexible glycine-serine linker between the NRPS protein and the attached SYNZIP, aiming to improve dynamic domain-domain interactions. Through an iterative optimization process, we achieved remarkable improvements in production yields, with titer increases of up to 55-fold compared to the nonoptimized counterparts. These optimizations successfully restored production levels of type S NRPSs to those observed in wild-type NRPSs and even surpassed them. Overall, our findings demonstrate the potential of engineering bacterial biosynthetic assembly lines for the production of artificial nonribosomal peptides. In addition, optimizing the SYNZIP toolbox can have valuable implications for diverse applications in synthetic biology, such as metabolic engineering, cell signaling studies, or engineering of other multienzyme complexes, such as PKSs.


Asunto(s)
Sintasas Poliquetidas , Policétidos , Sintasas Poliquetidas/genética , Péptido Sintasas/genética , Péptido Sintasas/química , Péptidos/metabolismo , Policétidos/metabolismo
13.
Access Microbiol ; 5(5)2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323942

RESUMEN

As a proven source of potent and selective antimicrobials, Xenorhabdus bacteria are important to an age plagued with difficult-to-treat microbial infections. Yet, only 27 species have been described to date. In this study, a novel Xenorhabdus species was discovered through genomic studies on three isolates from Kenyan soils. Soils in Western Kenya were surveyed for steinernematids and Steinernema isolates VH1 and BG5 were recovered from red volcanic loam soils from cultivated land in Vihiga and clay soils from riverine land in Bungoma respectively. From the two nematode isolates, Xenorhabdus sp. BG5 and Xenorhabdus sp. VH1 were isolated. The genomes of these two, plus that of X. griffiniae XN45 - this was previously isolated from Steinernema sp. scarpo that also originated from Kenyan soils - were sequenced and assembled. Nascent genome assemblies of the three isolates were of good quality with over 70 % of their proteome having known functions. These three isolates formed the X. griffiniae clade in a phylogenomic reconstruction of the genus. Their species were delineated using three overall genome relatedness indices: an unnamed species of the genus, Xenorhabdus sp. BG5, X. griffiniae VH1 and X. griffiniae XN45. A pangenome analysis of this clade revealed that over 70 % of species-specific genes encoded unknown functions. Transposases were linked to genomic islands in Xenorhabdus sp. BG5. Thus, overall genome-related indices sufficiently delineated species of two new Xenorhabdus isolates from Kenya, both of which were closely related to X. griffiniae . The functions encoded by most species-specific genes in the X. griffiniae clade remain unknown.

14.
Methods Mol Biol ; 2670: 219-234, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37184707

RESUMEN

The bioengineering of nonribosomal peptide synthetases (NRPSs) is a rapidly developing field to access natural product derivatives and new-to-nature natural products like scaffolds with changed or improved properties. However, the rational (re-)design of these often gigantic assembly-line proteins is by no means trivial and needs in-depth insights into structural flexibility, inter-domain communication, and the role of proofreading by catalytic domains-so it is not surprising that most previous rational reprogramming efforts have been met with limited success. With this practical guide, the result of nearly one decade of NRPS engineering in the Bode lab, we provide valuable insights into the strategies we have developed during this time for the successful engineering and cloning of these fascinating molecular machines.


Asunto(s)
Péptido Sintasas , Péptido Sintasas/química , Dominio Catalítico
15.
Structure ; 31(5): 573-583.e5, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36963398

RESUMEN

Modification of the polyketide anthraquinone AQ-256 in the entomopathogenic Photorhabdus luminescens involves several O-methylations, but the biosynthetic gene cluster antA-I lacks corresponding tailoring enzymes. We here describe the identification of five putative, highly homologous O-methyltransferases encoded in the genome of P. luminescens. Activity assays in vitro and deletion experiments in vivo revealed that three of them account for anthraquinone tailoring by producing three monomethylated and two dimethylated species of AQ-256. X-ray structures of all five enzymes indicate high structural and mechanistic similarity. As confirmed by structure-based mutagenesis, a conserved histidine at the active site likely functions as a general base for substrate deprotonation and subsequent methyl transfer in all enzymes. Eight complex structures with AQ-256 as well as mono- and dimethylated derivatives confirm the substrate specificity patterns found in vitro and visualize how single amino acid differences in the active-site pockets impact substrate orientation and govern site-specific methylation.


Asunto(s)
Metiltransferasas , Photorhabdus , Metiltransferasas/química , Metilación , Photorhabdus/genética , Dominio Catalítico , Antraquinonas/metabolismo
16.
ACS Synth Biol ; 12(1): 203-212, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36535068

RESUMEN

Rhabdopeptide/xenortide-like peptide (RXP) nonribosomal peptide synthetases (NRPSs) derived from entomophathogenic Xenorhabdus and Photorhabdus bacteria often produce libraries of different peptides varying in amino acid composition, number and degree of methylation, which mainly is a result of promiscuous docking domains (DDs) mediating protein-protein interactions between the different NRPS subunits. In this study, we present two specific RXP-NRPS systems with rather specific DDs that were used as platforms to generate a series of defined RXPs via the exchange of adenylation/methyltransferase (A-MT) domains in the systems followed by heterologous expression in Escherichia coli. Additionally, these results suggest that NRPS subunit interaction is not only exclusively dependent on DDs but at least partially also on A domains.


Asunto(s)
Péptido Sintasas , Péptidos , Péptidos/metabolismo , Péptido Sintasas/metabolismo , Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo
17.
Front Microbiol ; 14: 1271764, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38173677

RESUMEN

An entomopathogenic bacterium, Photorhabdus temperata subsp. temperata, is mutualistic to its host nematode, Heterorhabditis megidis. The infective juvenile nematodes enter target insects through natural openings and release the symbiotic bacteria into the insect hemocoel. The released bacteria suppress the insect immune responses and cause septicemia through their secondary metabolites. GameXPeptide (GXP) is one of the common secondary metabolites of most Photorhabdus species and is produced by the catalytic activity of a specific non-ribosomal peptide synthetase called GxpS encoded by the gxpS gene. This study confirmed gxpS to be encoded in the P. temperata temperata genome and analyzed its expression during bacterial growth. LC-MS/MS analysis of the bacterial culture broth contained at least four different GXPs (GXP-A to GXP-D), in which GXP-A was the most abundant. To investigate GXP synthesis following gxpS expression, the gxpS promoter of P. temperata temperata was replaced with an inducible arabinose promoter by homologous recombination. The gxpS transcript levels in the mutant were altered by the addition of l-arabinose. Without the inducer, the gxpS transcript level was significantly lower compared to the wild type and produced significantly lower amounts of the four GXPs. The addition of the inducer to the mutant significantly increased gxpS expression and produced significantly higher levels of the four GXPs compared to the wild type. The metabolite extracts obtained from wild-type and mutant bacteria showed differential immunosuppressive activities according to their GXP contents against the cellular and humoral immune responses of a lepidopteran insect, Spodoptera exigua. Interestingly, the gxpS-mutant bacteria showed less insecticidal activity compared to the wild type, whereas the addition of GXP to the mutant significantly restored insecticidal activity. These results suggest that the gxpS gene encoded in P. temperata temperata is responsible for the production of at least four different GXPs, which play crucial roles in bacterial virulence.

18.
Angew Chem Int Ed Engl ; 61(51): e202206106, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36198080

RESUMEN

Benzoxazolinate is a rare bis-heterocyclic moiety that interacts with proteins and DNA and confers extraordinary bioactivities on natural products, such as C-1027. However, the biosynthetic gene responsible for the key cyclization step of benzoxazolinate remains unclear. Herein, we show a putative acyl AMP-ligase responsible for the last cyclization step. We used the enzyme as a probe for genome mining and discovered that the orphan benzobactin gene cluster in entomopathogenic bacteria prevails across Proteobacteria and Firmicutes. It turns out that Pseudomonas chlororaphis produces various benzobactins, whose biosynthesis is highlighted by a synergistic effect of two unclustered genes encoding enzymes on boosting benzobactin production; the formation of non-proteinogenic 2-hydroxymethylserine by a serine hydroxymethyltransferase; and the types I and II NRPS architecture for structural diversity. Our findings reveal the biosynthetic potential of a widespread benzobactin gene cluster.


Asunto(s)
Productos Biológicos , Productos Biológicos/metabolismo , Bacterias/metabolismo , Familia de Multigenes , Péptido Sintasas/metabolismo
19.
PLoS One ; 17(9): e0274956, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36129957

RESUMEN

Xenorhabdus and Photorhabdus can produce a variety of secondary metabolites with broad spectrum bioactivity against microorganisms. We investigated the antibacterial activity of Xenorhabdus and Photorhabdus against 15 antibiotic-resistant bacteria strains. Photorhabdus extracts had strong inhibitory the growth of Methicillin-resistant Staphylococcus aureus (MRSA) by disk diffusion. The P. akhurstii s subsp. akhurstii (bNN168.5_TH) extract showed lower minimum inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC). The interaction between either P. akhurstii subsp. akhurstii (bNN141.3_TH) or P. akhurstii subsp. akhurstii (bNN168.5_TH) or P. hainanensis (bNN163.3_TH) extract in combination with oxacillin determined by checkerboard assay exhibited partially synergistic interaction with fractional inhibitory concentration index (FICI) of 0.53. Time-killing assay for P. akhurstii subsp. akhurstii (bNN168.5_TH) extract against S. aureus strain PB36 significantly decreased cell viability from 105 CFU/ml to 103 CFU/ml within 30 min (P < 0.001, t-test). Transmission electron microscopic investigation elucidated that the bNN168.5_TH extract caused treated S. aureus strain PB36 (MRSA) cell membrane damage. The biosynthetic gene clusters of the bNN168.5_TH contained non-ribosomal peptide synthetase cluster (NRPS), hybrid NRPS-type l polyketide synthase (PKS) and siderophore, which identified potentially interesting bioactive products: xenematide, luminmide, xenortide A-D, luminmycin A, putrebactin/avaroferrin and rhizomide A-C. This study demonstrates that bNN168.5_TH showed antibacterial activity by disrupting bacterial cytoplasmic membrane and the draft genome provided insights into the classes of bioactive products. This also provides a potential approach in developing a novel antibacterial agent.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Photorhabdus , Xenorhabdus , Antibacterianos/química , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Familia de Multigenes , Oxacilina/farmacología , Photorhabdus/metabolismo , Extractos Vegetales/farmacología , Sintasas Poliquetidas/genética , Sideróforos/metabolismo , Staphylococcus aureus/genética , Xenorhabdus/genética
20.
ACS Chem Biol ; 17(8): 2221-2228, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35860925

RESUMEN

Piscibactins and photoxenobactins are metallophores and virulence factors, whose biosynthetic gene cluster, termed pxb, is the most prevalent polyketide synthase/non-ribosomal peptide synthetase hybrid cluster across entomopathogenic bacteria. They are structurally similar to yersiniabactin, which contributes to the virulence of the human pathogen Yersinia pestis. However, the pxb-derived products feature various chain lengths and unusual carboxamide, thiocarboxylic acid, and dithioperoxoate termini, which are rarely found in thiotemplated biosyntheses. Here, we characterize the pxb biosynthetic logic by gene deletions, site-directed mutagenesis, and isotope labeling experiments. Notably, we propose that it involves (1) heterocyclization domains with various catalytic efficiencies catalyzing thiazoline and amide/thioester bond formation and (2) putative C-N and C-S bond cleavage off-loading manners, which lead to products with different chain lengths and usual termini. Additionally, the post-assembly-line spontaneous conversions of the biosynthetic end product contribute to production titers of the other products in the culture medium. This study broadens our knowledge of thiotemplated biosynthesis and how bacterial host generate a chemical arsenal.


Asunto(s)
Bacterias , Sintasas Poliquetidas , Bacterias/genética , Humanos , Familia de Multigenes , Sintasas Poliquetidas/genética , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...