Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Hum Mutat ; 43(12): 1956-1969, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36030538

RESUMEN

Tuberous sclerosis complex (TSC) is a multi-system genetic disorder. Most patients have germline mutations in TSC1 or TSC2 but, 10%-15% patients do not have TSC1/TSC2 mutations detected on routine clinical genetic testing. We investigated the contribution of low-level mosaic TSC1/TSC2 mutations in unsolved sporadic patients and families with TSC. Thirty-one sporadic TSC patients negative on routine testing and eight families with suspected parental mosaicism were sequenced using deep panel sequencing followed by droplet digital polymerase chain reaction. Pathogenic variants were found in 22/31 (71%) unsolved sporadic patients, 16 were mosaic (median variant allele fraction [VAF] 6.8% in blood) and 6 had missed germline mutations. Parental mosaicism was detected in 5/8 families (median VAF 1% in blood). Clinical testing laboratories typically only report pathogenic variants with allele fractions above 10%. Our findings highlight the critical need to change laboratory practice by implementing higher sensitivity assays to improve diagnostic yield, inform patient management and guide reproductive counseling.


Asunto(s)
Esclerosis Tuberosa , Humanos , Esclerosis Tuberosa/diagnóstico , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/patología , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteínas Supresoras de Tumor/genética , Mosaicismo , Mutación
2.
Genet Med ; 22(3): 598-609, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31700164

RESUMEN

PURPOSE: Most classical aniridia is caused by PAX6 haploinsufficiency. PAX6 missense variants can be hypomorphic or mimic haploinsufficiency. We hypothesized that missense variants also cause previously undescribed disease by altering the affinity and/or specificity of PAX6 genomic interactions. METHODS: We screened PAX6 in 372 individuals with bilateral microphthalmia, anophthalmia, or coloboma (MAC) from the Medical Research Council Human Genetics Unit eye malformation cohort (HGUeye) and reviewed data from the Deciphering Developmental Disorders study. We performed cluster analysis on PAX6-associated ocular phenotypes by variant type and molecular modeling of the structural impact of 86 different PAX6 causative missense variants. RESULTS: Eight different PAX6 missense variants were identified in 17 individuals (15 families) with MAC, accounting for 4% (15/372) of our cohort. Seven altered the paired domain (p.[Arg26Gln]x1, p.[Gly36Val]x1, p.[Arg38Trp]x2, p.[Arg38Gln]x1, p.[Gly51Arg]x2, p.[Ser54Arg]x2, p.[Asn124Lys]x5) and one the homeodomain (p.[Asn260Tyr]x1). p.Ser54Arg and p.Asn124Lys were exclusively associated with severe bilateral microphthalmia. MAC-associated variants were predicted to alter but not ablate DNA interaction, consistent with the electrophoretic mobility shifts observed using mutant paired domains with well-characterized PAX6-binding sites. We found no strong evidence for novel PAX6-associated extraocular disease. CONCLUSION: Altering the affinity and specificity of PAX6-binding genome-wide provides a plausible mechanism for the worse-than-null effects of MAC-associated missense variants.


Asunto(s)
Anomalías del Ojo/genética , Predisposición Genética a la Enfermedad , Microftalmía/genética , Factor de Transcripción PAX6/genética , Adolescente , Adulto , Sitios de Unión/genética , Niño , Preescolar , Estudios de Cohortes , Proteínas de Unión al ADN/genética , Anomalías del Ojo/patología , Femenino , Heterocigoto , Humanos , Lactante , Masculino , Microftalmía/patología , Mutación Missense/genética , Linaje , Adulto Joven
3.
Am J Hum Genet ; 105(2): 403-412, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31303265

RESUMEN

POU3F3, also referred to as Brain-1, is a well-known transcription factor involved in the development of the central nervous system, but it has not previously been associated with a neurodevelopmental disorder. Here, we report the identification of 19 individuals with heterozygous POU3F3 disruptions, most of which are de novo variants. All individuals had developmental delays and/or intellectual disability and impairments in speech and language skills. Thirteen individuals had characteristic low-set, prominent, and/or cupped ears. Brain abnormalities were observed in seven of eleven MRI reports. POU3F3 is an intronless gene, insensitive to nonsense-mediated decay, and 13 individuals carried protein-truncating variants. All truncating variants that we tested in cellular models led to aberrant subcellular localization of the encoded protein. Luciferase assays demonstrated negative effects of these alleles on transcriptional activation of a reporter with a FOXP2-derived binding motif. In addition to the loss-of-function variants, five individuals had missense variants that clustered at specific positions within the functional domains, and one small in-frame deletion was identified. Two missense variants showed reduced transactivation capacity in our assays, whereas one variant displayed gain-of-function effects, suggesting a distinct pathophysiological mechanism. In bioluminescence resonance energy transfer (BRET) interaction assays, all the truncated POU3F3 versions that we tested had significantly impaired dimerization capacities, whereas all missense variants showed unaffected dimerization with wild-type POU3F3. Taken together, our identification and functional cell-based analyses of pathogenic variants in POU3F3, coupled with a clinical characterization, implicate disruptions of this gene in a characteristic neurodevelopmental disorder.


Asunto(s)
Regulación de la Expresión Génica , Mutación , Trastornos del Neurodesarrollo/etiología , Factores del Dominio POU/genética , Activación Transcripcional , Secuencia de Aminoácidos , Niño , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Masculino , Trastornos del Neurodesarrollo/patología , Factores del Dominio POU/química , Conformación Proteica , Homología de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA