Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Cancer Res ; 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39437149

RESUMEN

Breast cancer is the most commonly diagnosed cancer in women, with distant metastasis being the main cause of breast cancer-related deaths. Elucidating the changes in the tumor and immune ecosystems that are associated with metastatic disease is essential to improve understanding and ultimately treatment of metastasis. Here, we developed an in-depth, spatially resolved single-cell atlas of the phenotypic diversity of tumor and immune cells in primary human breast tumors and matched distant metastases, using imaging mass cytometry to analyze a total of 75 unique antibody targets. While the same tumor cell phenotypes were typically present in primary tumors and metastatic sites, suggesting a strong founder effect of the primary tumor, their proportions varied between matched samples. Notably, the metastatic site did not influence tumor phenotype composition, except for the brain. Metastatic sites exhibited a lower number of immune cells overall, but had a higher proportion of myeloid cells as well as exhausted and cytotoxic T cells. Myeloid cells showed distinct tissue-specific compositional signatures and increased presence of potentially matrix remodeling phenotypes in metastatic sites. This analysis of tumor and immune cell phenotypic composition of metastatic breast cancer highlights the heterogeneity of the disease within patients and across distant metastatic sites, indicating myeloid cells as the predominant immune modulators that could potentially be targeted at these sites.

2.
Cancer Cell ; 42(9): 1480-1485, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39255773

RESUMEN

Cancer-associated fibroblasts (CAFs) are heterogeneous and ubiquitous stromal cells within the tumor microenvironment (TME). Numerous CAF types have been described, typically using single-cell technologies such as single-cell RNA sequencing. There is no general classification system for CAFs, hampering their study and therapeutic targeting. We propose a simple CAF classification system based on single-cell phenotypes and spatial locations of CAFs in multiple cancer types, assess how our scheme fits within current knowledge, and invite the CAF research community to further refine it.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Análisis de la Célula Individual , Microambiente Tumoral , Fibroblastos Asociados al Cáncer/patología , Fibroblastos Asociados al Cáncer/metabolismo , Humanos , Neoplasias/clasificación , Neoplasias/patología , Neoplasias/genética , Análisis de la Célula Individual/métodos , Fenotipo , Animales
3.
Nat Commun ; 15(1): 7860, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251590

RESUMEN

Pluripotent mouse embryonic stem cells (ESCs) can differentiate to all germ layers and serve as an in vitro model of embryonic development. To better understand the differentiation paths traversed by ESCs committing to different lineages, we track individual differentiating ESCs by timelapse imaging followed by multiplexed high-dimensional Imaging Mass Cytometry (IMC) protein quantification. This links continuous live single-cell molecular NANOG and cellular dynamics quantification over 5-6 generations to protein expression of 37 different molecular regulators in the same single cells at the observation endpoints. Using this unique data set including kinship history and live lineage marker detection, we show that NANOG downregulation occurs generations prior to, but is not sufficient for neuroectoderm marker Sox1 upregulation. We identify a developmental cell type co-expressing both the canonical Sox1 neuroectoderm and FoxA2 endoderm markers in vitro and confirm the presence of such a population in the post-implantation embryo. RNASeq reveals cells co-expressing SOX1 and FOXA2 to have a unique cell state characterized by expression of both endoderm as well as neuroectoderm genes suggesting lineage potential towards both germ layers.


Asunto(s)
Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 3-beta del Hepatocito , Células Madre Embrionarias de Ratones , Factores de Transcripción SOXB1 , Animales , Ratones , Factor Nuclear 3-beta del Hepatocito/metabolismo , Factor Nuclear 3-beta del Hepatocito/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción SOXB1/genética , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Rastreo Celular/métodos , Proteína Homeótica Nanog/metabolismo , Proteína Homeótica Nanog/genética , Linaje de la Célula , Endodermo/metabolismo , Endodermo/citología , Análisis de la Célula Individual/métodos , Desarrollo Embrionario/genética , Placa Neural/metabolismo , Placa Neural/embriología , Placa Neural/citología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/citología
4.
Nat Commun ; 15(1): 3226, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622132

RESUMEN

The tumor microenvironment plays a crucial role in determining response to treatment. This involves a series of interconnected changes in the cellular landscape, spatial organization, and extracellular matrix composition. However, assessing these alterations simultaneously is challenging from a spatial perspective, due to the limitations of current high-dimensional imaging techniques and the extent of intratumoral heterogeneity over large lesion areas. In this study, we introduce a spatial proteomic workflow termed Hyperplexed Immunofluorescence Imaging (HIFI) that overcomes these limitations. HIFI allows for the simultaneous analysis of > 45 markers in fragile tissue sections at high magnification, using a cost-effective high-throughput workflow. We integrate HIFI with machine learning feature detection, graph-based network analysis, and cluster-based neighborhood analysis to analyze the microenvironment response to radiation therapy in a preclinical model of glioblastoma, and compare this response to a mouse model of breast-to-brain metastasis. Here we show that glioblastomas undergo extensive spatial reorganization of immune cell populations and structural architecture in response to treatment, while brain metastases show no comparable reorganization. Our integrated spatial analyses reveal highly divergent responses to radiation therapy between brain tumor models, despite equivalent radiotherapy benefit.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Ratones , Proteómica , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patología , Glioblastoma/diagnóstico por imagen , Glioblastoma/radioterapia , Glioblastoma/patología , Encéfalo/patología , Técnica del Anticuerpo Fluorescente , Microambiente Tumoral
5.
Nat Commun ; 15(1): 1792, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413586

RESUMEN

Neutrophils are evolutionarily conserved innate immune cells playing pivotal roles in host defense. Zebrafish models have contributed substantially to our understanding of neutrophil functions but similarities to human neutrophil maturation have not been systematically characterized, which limits their applicability to studying human disease. Here we show, by generating and analysing transgenic zebrafish strains representing distinct neutrophil differentiation stages, a high-resolution transcriptional profile of neutrophil maturation. We link gene expression at each stage to characteristic transcription factors, including C/ebp-ß, which is important for late neutrophil maturation. Cross-species comparison of zebrafish, mouse, and human samples confirms high molecular similarity of immature stages and discriminates zebrafish-specific from pan-species gene signatures. Applying the pan-species neutrophil maturation signature to RNA-sequencing data from human neuroblastoma patients reveals association between metastatic tumor cell infiltration in the bone marrow and an overall increase in mature neutrophils. Our detailed neutrophil maturation atlas thus provides a valuable resource for studying neutrophil function at different stages across species in health and disease.


Asunto(s)
Neutrófilos , Pez Cebra , Animales , Humanos , Ratones , Pez Cebra/genética , Pez Cebra/metabolismo , Animales Modificados Genéticamente , Médula Ósea/metabolismo , Perfilación de la Expresión Génica
6.
Nat Rev Cancer ; 24(3): 171-191, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316945

RESUMEN

Tissue imaging has become much more colourful in the past decade. Advances in both experimental and analytical methods now make it possible to image protein markers in tissue samples in high multiplex. The ability to routinely image 40-50 markers simultaneously, at single-cell or subcellular resolution, has opened up new vistas in the study of tumour biology. Cellular phenotypes, interaction, communication and spatial organization have become amenable to molecular-level analysis, and application to patient cohorts has identified clinically relevant cellular and tissue features in several cancer types. Here, we review the use of multiplex protein imaging methods to study tumour biology, discuss ongoing attempts to combine these approaches with other forms of spatial omics, and highlight challenges in the field.


Asunto(s)
Neoplasias , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/genética , Neoplasias/metabolismo , Comunicación , Biología
7.
Cancer Cell ; 42(3): 396-412.e5, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38242124

RESUMEN

Despite advances in treatment, lung cancer survival rates remain low. A better understanding of the cellular heterogeneity and interplay of cancer-associated fibroblasts (CAFs) within the tumor microenvironment will support the development of personalized therapies. We report a spatially resolved single-cell imaging mass cytometry (IMC) analysis of CAFs in a non-small cell lung cancer cohort of 1,070 patients. We identify four prognostic patient groups based on 11 CAF phenotypes with distinct spatial distributions and show that CAFs are independent prognostic factors for patient survival. The presence of tumor-like CAFs is strongly correlated with poor prognosis. In contrast, inflammatory CAFs and interferon-response CAFs are associated with inflamed tumor microenvironments and higher patient survival. High density of matrix CAFs is correlated with low immune infiltration and is negatively correlated with patient survival. In summary, our data identify phenotypic and spatial features of CAFs that are associated with patient outcome in NSCLC.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Fibroblastos Asociados al Cáncer/patología , Pronóstico , Fenotipo , Microambiente Tumoral , Fibroblastos/patología
8.
BMC Bioinformatics ; 25(1): 9, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172724

RESUMEN

BACKGROUND: Highly multiplexed imaging enables single-cell-resolved detection of numerous biological molecules in their spatial tissue context. Interactive visualization of multiplexed imaging data is crucial at any step of data analysis to facilitate quality control and the spatial exploration of single cell features. However, tools for interactive visualization of multiplexed imaging data are not available in the statistical programming language R. RESULTS: Here, we describe cytoviewer, an R/Bioconductor package for interactive visualization and exploration of multi-channel images and segmentation masks. The cytoviewer package supports flexible generation of image composites, allows side-by-side visualization of single channels, and facilitates the spatial visualization of single-cell data in the form of segmentation masks. As such, cytoviewer improves image and segmentation quality control, the visualization of cell phenotyping results and qualitative validation of hypothesis at any step of data analysis. The package operates on standard data classes of the Bioconductor project and therefore integrates with an extensive framework for single-cell and image analysis. The graphical user interface allows intuitive navigation and little coding experience is required to use the package. We showcase the functionality and biological application of cytoviewer by analysis of an imaging mass cytometry dataset acquired from cancer samples. CONCLUSIONS: The cytoviewer package offers a rich set of features for highly multiplexed imaging data visualization in R that seamlessly integrates with the workflow for image and single-cell data analysis. It can be installed from Bioconductor via https://www.bioconductor.org/packages/release/bioc/html/cytoviewer.html . The development version and further instructions can be found on GitHub at https://github.com/BodenmillerGroup/cytoviewer .


Asunto(s)
Neoplasias , Programas Informáticos , Humanos , Lenguajes de Programación , Procesamiento de Imagen Asistido por Computador
9.
Nat Protoc ; 18(11): 3565-3613, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37816904

RESUMEN

Multiplexed imaging enables the simultaneous spatial profiling of dozens of biological molecules in tissues at single-cell resolution. Extracting biologically relevant information, such as the spatial distribution of cell phenotypes from multiplexed tissue imaging data, involves a number of computational tasks, including image segmentation, feature extraction and spatially resolved single-cell analysis. Here, we present an end-to-end workflow for multiplexed tissue image processing and analysis that integrates previously developed computational tools to enable these tasks in a user-friendly and customizable fashion. For data quality assessment, we highlight the utility of napari-imc for interactively inspecting raw imaging data and the cytomapper R/Bioconductor package for image visualization in R. Raw data preprocessing, image segmentation and feature extraction are performed using the steinbock toolkit. We showcase two alternative approaches for segmenting cells on the basis of supervised pixel classification and pretrained deep learning models. The extracted single-cell data are then read, processed and analyzed in R. The protocol describes the use of community-established data containers, facilitating the application of R/Bioconductor packages for dimensionality reduction, single-cell visualization and phenotyping. We provide instructions for performing spatially resolved single-cell analysis, including community analysis, cellular neighborhood detection and cell-cell interaction testing using the imcRtools R/Bioconductor package. The workflow has been previously applied to imaging mass cytometry data, but can be easily adapted to other highly multiplexed imaging technologies. This protocol can be implemented by researchers with basic bioinformatics training, and the analysis of the provided dataset can be completed within 5-6 h. An extended version is available at https://bodenmillergroup.github.io/IMCDataAnalysis/ .


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Programas Informáticos , Flujo de Trabajo , Biología Computacional/métodos , Análisis de la Célula Individual/métodos
10.
Nat Commun ; 14(1): 5154, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620318

RESUMEN

Immune checkpoint inhibitor treatment has the potential to prolong survival in non-small cell lung cancer (NSCLC), however, some of the patients develop resistance following initial response. Here, we analyze the immune phenotype of matching tumor samples from a cohort of NSCLC patients showing good initial response to immune checkpoint inhibitors, followed by acquired resistance at later time points. By using imaging mass cytometry and whole exome and RNA sequencing, we detect two patterns of resistance¨: One group of patients is characterized by reduced numbers of tumor-infiltrating CD8+ T cells and reduced expression of PD-L1 after development of resistance, whereas the other group shows high CD8+ T cell infiltration and high expression of PD-L1 in addition to markedly elevated expression of other immune-inhibitory molecules. In two cases, we detect downregulation of type I and II IFN pathways following progression to resistance, which could lead to an impaired anti-tumor immune response. This study thus captures the development of immune checkpoint inhibitor resistance as it progresses and deepens our mechanistic understanding of immunotherapy response in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Linfocitos T CD8-positivos , Antígeno B7-H1/genética , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Inmunosupresores , Fenotipo
11.
Nat Methods ; 20(9): 1304-1309, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37653118

RESUMEN

Imaging mass cytometry (IMC) is a highly multiplexed, antibody-based imaging method that captures heterogeneous spatial protein expression patterns at subcellular resolution. Here we report the extension of IMC to low-abundance markers through incorporation of the DNA-based signal amplification by exchange reaction, immuno-SABER. We applied SABER-IMC to image the tumor immune microenvironment in human melanoma by simultaneous imaging of 18 markers with immuno-SABER and 20 markers without amplification. SABER-IMC enabled the identification of immune cell phenotypic markers, such as T cell co-receptors and their ligands, that are not detectable with IMC.


Asunto(s)
Diagnóstico por Imagen , Melanoma , Humanos , Anticuerpos , Citometría de Imagen , ADN , Microambiente Tumoral
12.
Nat Methods ; 20(9): 1310-1322, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37653120

RESUMEN

Rapid, highly multiplexed, nondestructive imaging that spans the molecular to the supra-cellular scale would be a powerful tool for tissue analysis. However, the physical constraints of established imaging methods limit the simultaneous improvement of these parameters. Whole-organism to atomic-level imaging is possible with tissue-penetrant, picometer-wavelength X-rays. To enable highly multiplexed X-ray imaging, we developed multielement Z-tag X-ray fluorescence (MEZ-XRF) that can operate at kHz speeds when combined with signal amplification by exchange reaction (SABER)-amplified Z-tag reagents. We demonstrated parallel imaging of 20 Z-tag or SABER Z-tag reagents at subcellular resolution in cell lines and multiple human tissues. We benchmarked MEZ-XRF against imaging mass cytometry and demonstrated the nondestructive multiscale repeat imaging capabilities of MEZ-XRF with rapid tissue overview scans, followed by slower, more sensitive imaging of low-abundance markers such as immune checkpoint proteins. The unique multiscale, nondestructive nature of MEZ-XRF, combined with SABER Z-tags for high sensitivity or enhanced speed, enables highly multiplexed bioimaging across biological scales.


Asunto(s)
Benchmarking , Neoplasias Cutáneas , Humanos , Rayos X , Línea Celular , Microscopía Fluorescente
13.
Nat Commun ; 14(1): 4294, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463917

RESUMEN

Cancer-associated fibroblasts (CAFs) are a diverse cell population within the tumour microenvironment, where they have critical effects on tumour evolution and patient prognosis. To define CAF phenotypes, we analyse a single-cell RNA sequencing (scRNA-seq) dataset of over 16,000 stromal cells from tumours of 14 breast cancer patients, based on which we define and functionally annotate nine CAF phenotypes and one class of pericytes. We validate this classification system in four additional cancer types and use highly multiplexed imaging mass cytometry on matched breast cancer samples to confirm our defined CAF phenotypes at the protein level and to analyse their spatial distribution within tumours. This general CAF classification scheme will allow comparison of CAF phenotypes across studies, facilitate analysis of their functional roles, and potentially guide development of new treatment strategies in the future.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Fibroblastos Asociados al Cáncer/metabolismo , Proteómica , Fenotipo , Microambiente Tumoral/genética , Neoplasias/patología
14.
bioRxiv ; 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37292939

RESUMEN

Highly multiplexed imaging enables single-cell-resolved detection of numerous biological molecules in their spatial tissue context. Interactive data visualization of multiplexed imaging data is necessary for quality control and hypothesis examination. Here, we describe cytoviewer, an R/Bioconductor package for interactive visualization and exploration of multi-channel images and segmentation masks. The cytoviewer package supports flexible generation of image composites, allows side-by-side visualization of single channels, and facilitates the spatial visualization of single-cell data in the form of segmentation masks. The package operates on SingleCellExperiment, SpatialExperiment and CytoImageList objects and therefore integrates with the Bioconductor framework for single-cell and image analysis. Users of cytoviewer need little coding expertise, and the graphical user interface allows user-friendly navigation. We showcase the functionality of cytoviewer by analysis of an imaging mass cytometry dataset of cancer patients.

15.
Cell Rep Med ; 4(3): 100977, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36921599

RESUMEN

Although breast cancer mortality is largely caused by metastasis, clinical decisions are based on analysis of the primary tumor and on lymph node involvement but not on the phenotype of disseminated cells. Here, we use multiplex imaging mass cytometry to compare single-cell phenotypes of primary breast tumors and matched lymph node metastases in 205 patients. We observe extensive phenotypic variability between primary and metastatic sites and that disseminated cell phenotypes frequently deviate from the clinical disease subtype. We identify single-cell phenotypes and spatial organizations of disseminated tumor cells that are associated with patient survival and a weaker survival association for high-risk phenotypes in the primary tumor. We show that p53 and GATA3 in lymph node metastases provide prognostic information beyond clinical classifiers and can be measured with standard methods. Molecular characterization of disseminated tumor cells is an untapped source of clinically applicable prognostic information for breast cancer.


Asunto(s)
Ganglios Linfáticos , Humanos , Metástasis Linfática/patología , Pronóstico , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología
16.
Nat Commun ; 14(1): 98, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609566

RESUMEN

Immune checkpoint therapy in breast cancer remains restricted to triple negative patients, and long-term clinical benefit is rare. The primary aim of immune checkpoint blockade is to prevent or reverse exhausted T cell states, but T cell exhaustion in breast tumors is not well understood. Here, we use single-cell transcriptomics combined with imaging mass cytometry to systematically study immune environments of human breast tumors that either do or do not contain exhausted T cells, with a focus on luminal subtypes. We find that the presence of a PD-1high exhaustion-like T cell phenotype is associated with an inflammatory immune environment with a characteristic cytotoxic profile, increased myeloid cell activation, evidence for elevated immunomodulatory, chemotactic, and cytokine signaling, and accumulation of natural killer T cells. Tumors harboring exhausted-like T cells show increased expression of MHC-I on tumor cells and of CXCL13 on T cells, as well as altered spatial organization with more immature rather than mature tertiary lymphoid structures. Our data reveal fundamental differences between immune environments with and without exhausted T cells within luminal breast cancer, and show that expression of PD-1 and CXCL13 on T cells, and MHC-I - but not PD-L1 - on tumor cells are strong distinguishing features between these environments.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/metabolismo , Receptor de Muerte Celular Programada 1 , Agotamiento de Células T , Fenotipo , Antineoplásicos/metabolismo , Linfocitos T CD8-positivos
18.
Nat Methods ; 20(3): 418-423, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36585456

RESUMEN

Recent advances in multiplexed imaging methods allow simultaneous detection of dozens of proteins and hundreds of RNAs, enabling deep spatial characterization of both healthy and diseased tissues. Parameters for the design of optimal multiplex imaging studies, especially those estimating how much area has to be imaged to capture all cell phenotype clusters, are lacking. Here, using a spatial transcriptomic atlas of healthy and tumor human tissues, we developed a statistical framework that determines the number and area of fields of view necessary to accurately identify all cell phenotypes that are part of a tissue. Using this strategy on imaging mass cytometry data, we identified a measurement of tissue spatial segregation that enables optimal experimental design. This strategy will enable an improved design of multiplexed imaging studies.


Asunto(s)
Neoplasias , Proyectos de Investigación , Humanos , Diagnóstico por Imagen , ARN , Neoplasias/diagnóstico por imagen
19.
Biol Imaging ; 3: e11, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38487685

RESUMEN

With the aim of producing a 3D representation of tumors, imaging and molecular annotation of xenografts and tumors (IMAXT) uses a large variety of modalities in order to acquire tumor samples and produce a map of every cell in the tumor and its host environment. With the large volume and variety of data produced in the project, we developed automatic data workflows and analysis pipelines. We introduce a research methodology where scientists connect to a cloud environment to perform analysis close to where data are located, instead of bringing data to their local computers. Here, we present the data and analysis infrastructure, discuss the unique computational challenges and describe the analysis chains developed and deployed to generate molecularly annotated tumor models. Registration is achieved by use of a novel technique involving spherical fiducial marks that are visible in all imaging modalities used within IMAXT. The automatic pipelines are highly optimized and allow to obtain processed datasets several times quicker than current solutions narrowing the gap between data acquisition and scientific exploitation.

20.
Clin Cancer Res ; 28(24): 5368-5382, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36228153

RESUMEN

PURPOSE: The low mutational load of some cancers is considered one reason for the difficulty to develop effective tumor vaccines. To overcome this problem, we developed a strategy to design neopeptides through single amino acid mutations to enhance their immunogenicity. EXPERIMENTAL DESIGN: Exome and RNA sequencing as well as in silico HLA-binding predictions to autologous HLA molecules were used to identify candidate neopeptides. Subsequently, in silico HLA-anchor placements were used to deduce putative T-cell receptor (TCR) contacts of peptides. Single amino acids of TCR contacting residues were then mutated by amino acid replacements. Overall, 175 peptides were synthesized and sets of 25 each containing both peptides designed to bind to HLA class I and II molecules applied in the vaccination. Upon development of a tumor recurrence, the tumor-infiltrating lymphocytes (TIL) were characterized in detail both at the bulk and clonal level. RESULTS: The immune response of peripheral blood T cells to vaccine peptides, including natural peptides and designed neopeptides, gradually increased with repetitive vaccination, but remained low. In contrast, at the time of tumor recurrence, CD8+ TILs and CD4+ TILs responded to 45% and 100%, respectively, of the vaccine peptides. Furthermore, TIL-derived CD4+ T-cell clones showed strong responses and tumor cell lysis not only against the designed neopeptide but also against the unmutated natural peptides of the tumor. CONCLUSIONS: Turning tumor self-peptides into foreign antigens by introduction of designed mutations is a promising strategy to induce strong intratumoral CD4+ T-cell responses in a cold tumor like glioblastoma.


Asunto(s)
Linfocitos T CD4-Positivos , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Recurrencia Local de Neoplasia , Linfocitos Infiltrantes de Tumor , Receptores de Antígenos de Linfocitos T/genética , Vacunación , Péptidos , Aminoácidos , Linfocitos T CD8-positivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...