RESUMEN
In December 2019, a new variant of SARS-CoV emerged, the so-called acute severe respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus causes the new coronavirus disease (COVID-19) and has been plaguing the world owing to its unprecedented spread efficiency, which has resulted in a huge death toll. In this sense, the repositioning of approved drugs is the fastest way to an effective response to a pandemic outbreak of this scale. Considering these facts, in this review we provide a comprehensive and critical discussion on the chemical aspects surrounding the drugs currently being studied as candidates for COVID-19 therapy. We intend to provide the general chemical community with an overview on the synthetic/biosynthetic pathways related to such molecules, as well as their mechanisms of action against the evaluated viruses and some insights on the pharmacological interactions involved in each case. Overall, the review aims to present the chemical aspects of the main bioactive molecules being considered to be repositioned for effective treatment of COVID-19 in all phases, from the mildest to the most severe.
Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos , Animales , Antivirales/síntesis química , Antivirales/farmacología , COVID-19/epidemiología , Línea Celular Tumoral , Ensayos Clínicos como Asunto , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Pandemias , SARS-CoV-2/efectos de los fármacosRESUMEN
BACKGROUND: Leishmaniasis is a neglected public health problem caused by several protozoanspecies of the genus Leishmania. The therapeutic arsenal for treating leishmaniasis is quite limited, raising concerns about the occurrence of resistant strains. Furthermore, most of these drugs were developed more than 70 years ago and suffer from poor efficacy and safety and are not well adapted to the needs of patients. Therefore, research on novel natural or synthetic compounds with antiparasitic activity is urgently needed. In this paper, we evaluated the effect and the mechanism of action of naphthotriazolyl-4-oxoquinolines on promastigotes and intracellular amastigotes of Leishmania amazonensis. MATERIALS AND METHODS: The naphthotriazolyl-4-oxoquinoline derivatives were obtained in good to moderate yields via the [3+2] cycloaddition reaction between 1,4-naphtoquinone and azido-4- oxoquinoline derivatives. HMPA at 100°C was established as the best solvent and temperature condition for this reaction. The structures of the compounds were confirmed by spectral analyses (infrared spectroscopy, one- and two-dimensional ¹H and ¹³C NMR spectroscopy, and high-resolution mass spectrometry). The compounds exhibited promising activities with IC50 values ranging from 0.7 to 2.0 µM against intracellular amastigotes of Leishmania amazonensis. The most selective compound was the Npentyl- substituted derivative, which showed a Selectivity Index (SI) of 8.6, making it less toxic than pentamidine (SI 4.5). RESULTS: Our results demonstrated that all compounds, except the N-propyl-substituted derivative, induce ROS production by parasites early in the culture. As a proof of concept, we demonstrated that the most selective compound was able to interfere with sterol biosynthesis in L. amazonensis. CONCLUSION: The naphthotriazolyl-4-oxoquinoline derivatives were obtained in good to moderate yields. These conjugates have potent in vitro antileishmanial activity involving at least two different mechanisms of action, making them promising lead compounds for the development of new therapeutic alternatives for leishmaniasis.
Asunto(s)
Antiprotozoarios/farmacología , Diseño de Fármacos , Leishmania/efectos de los fármacos , Quinolinas/farmacología , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Relación Dosis-Respuesta a Droga , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Quinolinas/síntesis química , Quinolinas/química , Relación Estructura-ActividadRESUMEN
BACKGROUND: Breast cancer is a major cause of death among women worldwide. Treatment for breast cancer involves the surgical removal of cancer tissue, followed by chemotherapy. Although the treatment is efficient, especially when the cancer is detected early, recurrence is common and is often resistant to the previous treatment. Therefore, a constant search for efficient and novel drugs for the treatment of breast cancer is mandatory. Recently, triazole derivatives have shown promising effects against different types of cancer, revealing these molecules as putative anticancer drugs. EXPERIMENTAL: We have synthesized a series of naphthotriazolyl-4-oxoquinoline derivatives and tested their activity against a human breast cancer cell line. Among the compounds tested, we identified a molecule that killed the human breast cancer cell line MCF-7 with minimal effects on its noncancer counterpart, MCF10A. This effect was seen after 24 hours of treatment and persisted for additional 24 hours after treatment withdrawal. After 1 hour of treatment, the compound, here named 12c, promoted a decrease in cell glucose consumption and lactate production. Moreover, the cells treated with 12c for 1 hour showed diminished intracellular ATP levels with unaltered mitochondrial potential and increased reactive oxygen species production. Additionally, apoptosis was triggered after treatment with the drug for 1 hour. All of these effects are only observed with MCF-7 cells, and not MCF10A. These data show that 12c has selective activity against breast cancer cells and is a potential candidate for a novel anticancer drug. RESULTS AND CONCLUSION: The naphthotriazolyl-4-oxoquinoline derivatives were obtained in good to moderate yields, and one of them, 12c, exhibited strong and selective antitumor properties. The antitumor mechanism involves inhibition of glycolysis, diminished intracellular ATP levels, induction of ROS production and triggering of apoptosis. These effects are all selective for cancer cells, since noncancer cells are unaffected, and these effects can only be attributed to the whole molecule, as different pharmacophoric groups did not reproduce these effects.