Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Nutr Food Res ; 68(13): e2300502, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961529

RESUMEN

SCOPE: Good vascular function is crucial for cerebral blood flow and cognitive performance. Diets high in anthocyanins have been shown to improve vascular function and are associated with improvements in cognition. This systematic review investigates randomized controlled trials examining the impact of anthocyanin intake on both cognition and vascular function. METHODS AND RESULTS: Of the 1486 studies identified through searching Ovid Medline and AMED, PsychInfo, Web of Science, and Scopus, 20 studies are selected which measured cognitive and vascular function. Overall, positive effects on verbal and working memory are observed, which are supported by studies using functional magnetic resonance imaging to demonstrate increased blood flow in brain regions related to these cognitive domains. However, effects of anthocyanins on blood pressure and markers of endothelial function are inconsistent. CONCLUSION: This systematic review provides evidence for a positive effect of anthocyanins on cognition and insight into the relevance of endothelial function. Anthocyanins are widely available and can be easily consumed in a range of different fruits, vegetables, and other products. Further studies should establish the optimal daily intake of anthocyanins for cardiovascular and cognitive health.


Asunto(s)
Antocianinas , Cognición , Humanos , Antocianinas/farmacología , Presión Sanguínea/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Circulación Cerebrovascular/efectos de los fármacos , Cognición/efectos de los fármacos , Memoria a Corto Plazo/efectos de los fármacos , Ensayos Clínicos Controlados Aleatorios como Asunto
2.
Nutrients ; 16(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38276562

RESUMEN

Type 2 diabetes mellitus (T2DM) is a major public health concern associated with high mortality and reduced life expectancy. Since diabetes is closely linked with lifestyle, not surprisingly, nutritional intervention and increased physical activity could play a vital role in attenuating the problems related to diabetes. Protein hydrolysates (PHs) and their bioactive peptides (BP) have been shown to exert a wide range of biological effects, including antioxidative, antihypertensive, and in particular, hypoglycaemic activities. To better understand the efficacy of such interventions, a systematic review and meta-analysis of randomised controlled trials (RCTs) were performed concerning the influence of protein hydrolysates on glycaemic biomarkers in subjects with and without hyperglycaemia. Five different databases were used to search for RCTs. In total, 37 RCTs were included in the systematic review and 29 RCTs in the meta-analysis. The meta-analysis revealed a significant reduction in postprandial blood glucose response (PPGR) in normoglycaemic (-0.22 mmol/L; 95% CI -0.43, -0.01; p ≤ 0.05) and in hyperglycaemic adults (-0.88 mmol/L; 95% CI -1.37, -0.39; p ≤ 0.001) compared with the respective control groups. A meta-regression analysis revealed a dose-dependent response for PPGR following PH consumption in normoglycaemic adults, specifically for doses ≤ 30 g. The postprandial blood insulin responses (PPIR) were significantly higher after the ingestion of PHs in both the group with and the group without hyperglycaemia, respectively (23.05 mIU/L; 95% CI 7.53, 38.57; p ≤ 0.01 and 12.57 mIU/L; 95% CI 2.72, 22.41; p ≤ 0.01), compared with controls. In terms of long-term responses, there was a small but significant reduction in both fasting blood glucose (FBG) and fasting glycated haemoglobin (HbA1c) in response to PH compared with the control group (p < 0.05). The PHs significantly improved the parameters of glycaemia in adults and, hence, it may contribute to the management and regulation of the future risk of developing T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Adulto , Humanos , Glucemia/metabolismo , Hidrolisados de Proteína , Hiperglucemia/prevención & control , Hiperglucemia/complicaciones , Péptidos/farmacología
3.
Curr Biol ; 33(23): R1246-R1261, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-38052178

RESUMEN

Climate change threatens global food and nutritional security through negative effects on crop growth and agricultural productivity. Many countries have adopted ambitious climate change mitigation and adaptation targets that will exacerbate the problem, as they require significant changes in current agri-food systems. In this review, we provide a roadmap for improved crop production that encompasses the effective transfer of current knowledge into plant breeding and crop management strategies that will underpin sustainable agriculture intensification and climate resilience. We identify the main problem areas and highlight outstanding questions and potential solutions that can be applied to mitigate the impacts of climate change on crop growth and productivity. Although translation of scientific advances into crop production lags far behind current scientific knowledge and technology, we consider that a holistic approach, combining disciplines in collaborative efforts, can drive better connections between research, policy, and the needs of society.


Asunto(s)
Cambio Climático , Productos Agrícolas , Fitomejoramiento , Agricultura , Producción de Cultivos
4.
Biomolecules ; 13(11)2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-38002290

RESUMEN

Dental caries is one of the most prevalent chronic diseases globally in both children and adults. This study investigated the potential of industrial sweet orange waste extracts (ISOWE) as a substitute for chlorhexidine (CHX) in managing dental caries. First, the cytotoxicity of ISOWE (40, 80, 120 mg/mL) and CHX (0.1 and 0.2%) on buccal epithelial cells was determined. ISOWE exhibited no overall toxicity, whereas CHX strongly affected cell viability. The combination of ISOWE and CHX significantly enhanced cell proliferation compared to CHX alone. Next, the antimicrobial efficacy of ISOWE, CHX, and their combination was assessed against a 7-day complex biofilm model inoculated with oral samples from human volunteers. CHX exhibited indiscriminate antimicrobial action, affecting both pathogenic and health-associated oral microorganisms. ISOWE demonstrated lower antimicrobial efficacy than CHX but showed enhanced efficacy against pathogenic species while preserving the oral microbiome's balance. When applied to a cariogenic biofilm, the combined treatment of ISOWE with 0.1% CHX showed similar efficacy to 0.2% CHX treatment alone. Overall, the findings suggest that ISOWE is a promising natural anti-cariogenic agent with lower toxicity and enhanced selectivity for pathogenic species compared to CHX.


Asunto(s)
Antiinfecciosos , Citrus sinensis , Caries Dental , Niño , Humanos , Clorhexidina/farmacología , Caries Dental/tratamiento farmacológico , Susceptibilidad a Caries Dentarias , Streptococcus mutans
5.
Mol Nutr Food Res ; 67(23): e2300480, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37877662

RESUMEN

SCOPE: Higher flavonoid intake is associated with reduced risk of non-alcoholic fatty liver disease (NAFLD). However, there is a large discrepancy in the effects of flavonoid supplementation on NAFLD. To fill such knowledge gap, we systematically reviewed randomized clinical trials (RCTs) to critically assess flavonoid supplementation effect on liver function, lipid profile, inflammation, and insulin resistance in adults with NAFLD. METHODS AND RESULTS: A systematic search was conducted from 4 databases from inception until May 2023. Twelve RCTs were included in the final analysis demonstrating beneficial effects of flavonoids on ALT (SMD = -3.59, p = 0.034), AST (SMD = -4.47, p = 0.001), GGT (SMD = -8.70, p = 0.000), CK-18M30 (SMD = -0.35, p = 0.042), TG (SMD = -0.37, p = 0.001), LDL-C (SMD = -0.38, p = 0.039), TC (MD = -0.25 mmol/l, p = 0.017), steatosis score (MD = -18.97, p = 0.30), TNF-α (MD = -0.88, p = 0.000), and NF-κB (MD = -1.62, p = 0.001). CONCLUSION: This meta-analysis suggests that flavonoid alleviates NAFLD through exerting favourable effects on liver function, lipid profile, and inflammation, indicating flavonoid supplementation presents a promising drug regimen for the management of NAFLD and its associated complications.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Adulto , Humanos , Suplementos Dietéticos , Flavonoides/farmacología , Flavonoides/uso terapéutico , Inflamación , Lípidos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto
6.
Molecules ; 28(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37687228

RESUMEN

The inhibition of carbohydrate digestion by plant bioactive compounds is a potential dietary strategy to counteract type 2 diabetes. Indeed, inhibition of α-amylase, a key enzyme that carries out the bulk of starch digestion, has been demonstrated for a range of bioactive compounds including anthocyanins; however, sample pigmentation often interferes with measurements, affecting colorimetric assay outcomes. Therefore, the present study compared the performance of a direct chromogenic assay, using 2-chloro-4 nitrophenyl α-D-maltotrioside (CNPG3) as a substrate, with the commonly used 3,5-dinitrosalicylic acid (DNS) assay. The direct chromogenic assay demonstrated a 5-10-fold higher sensitivity to determine α-amylase inhibition in various samples, including acarbose as a reference, pure anthocyanins, and anthocyanin-rich samples. The IC50 values of acarbose presented as 37.6 µg/mL and 3.72 µg/mL for the DNS assay and the direct chromogenic assay, respectively, whereas purified anthocyanins from blackcurrant showed IC50 values of 227.4 µg/mL and 35.0 µg/mL. The direct chromogenic assay is easy to perform, fast, reproducible, and suitable for high-throughput screening of pigmented α-amylase inhibitors.


Asunto(s)
Diabetes Mellitus Tipo 2 , alfa-Amilasas , Humanos , Acarbosa/farmacología , Antocianinas/farmacología
7.
Animals (Basel) ; 13(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37443994

RESUMEN

Red beetroot is a well-recognized and established source of bioactive compounds (e.g., betalains and polyphenols) with anti-inflammatory and antimicrobial properties. It is proposed as a potential alternative to zinc oxide with a focus on gut microbiota modulation and metabolite production. In this study, weaned pigs aged 28 days were fed either a control diet, a diet supplemented with zinc oxide (3000 mg/kg), or 2% and 4% pulverized whole red beetroot (CON, ZNO, RB2, and RB4; respectively) for 14 days. After pigs were euthanized, blood and digesta samples were collected for microbial composition and metabolite analyses. The results showed that the diet supplemented with red beetroot at 2% improved the gut microbial richness relative to other diets but marginally influenced the cecal microbial diversity compared to a zinc-oxide-supplemented diet. A further increase in red beetroot levels (4%-RB4) led to loss in cecal diversity and decreased short chain fatty acids and secondary bile acid concentrations. Also, an increased Proteobacteria abundance, presumably due to increased lactate/lactic-acid-producing bacteria was observed. In summary, red beetroot contains several components conceived to improve the gut microbiota and metabolite output of weaned pigs. Future studies investigating individual components of red beetroot will better elucidate their contributions to gut microbiota modulation and pig health.

8.
Pathogens ; 12(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37242327

RESUMEN

The current study evaluated the antibacterial properties of industrial sweet orange waste extracts (ISOWEs), which are a rich source of flavonoids. The ISOWEs exhibited antibacterial activity towards the dental cariogenic pathogens Streptococcus mutans and Lactobacillus casei with 13.0 ± 2.0 and 20.0 ± 2.0 mg/mL for MIC (minimum inhibitory concentration) and 37.7 ± 1.5 and 43.3 ± 2.1 mg/mL for MBC (minimum bactericidal concentration), respectively. When evaluated in a 7-day dual-species oral biofilm model, ISOWEs dose-dependently reduced the viable bacteria count, and demonstrated strong synergistic effects when combined with the anti-septic chlorhexidine (at 0.1 and 0.2%). Similarly, confocal microscopy confirmed the anti-cariogenic properties of ISOWEs, alone and in combination with chlorhexidine. The citrus flavonoids contributed differently to these effects, with the flavones (nobiletin, tangeretin and sinensetin) demonstrating significantly lower MICs and MBCs compared to the flavanones hesperidin and narirutin. In conclusion, our study demonstrated the potential of citrus waste as a currently underutilised source of flavonoids for antimicrobial applications, such as in dental health.

9.
Mol Nutr Food Res ; 67(15): e2200583, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37203590

RESUMEN

SCOPE: Betalain pigments are increasingly highlighted for their bioactive and anti-inflammatory properties, although research is lacking to demonstrate contributions of individual betalains. The work herein aimed to compare effects of four main betalains on inflammatory and cell-protective markers and to highlight potential structure-related relationships of the two main subgroups: betacyanins vs betaxanthins. METHODS AND RESULTS: Murine RAW 264.7 macrophages were stimulated with bacterial lipopolysaccharide following incubation with betacyanins (betanin, neobetanin) and betaxanthins (indicaxanthin, vulgaxanthin I) in concentrations from 1 to 100 µM. All betalains suppressed expression of pro-inflammatory markers IL-6, IL-1ß, iNOS, and COX-2 with tendency for stronger effects of betacyanins compared to betaxanthins. In contrast, HO-1 and gGCS showed mixed and only moderate induction, while more emphasized effects were observed for betacyanins. While all betalains suppressed mRNA levels of NADPH oxidase 2 (NOX-2), a superoxide generating enzyme, only betacyanins were able to counteract hydrogen peroxide induced reactive oxygen species (ROS) generation, in alignment with their radical scavenging potential. Furthermore, betaxanthins exerted pro-oxidant properties, elevating ROS production beyond hydrogen peroxide stimulation. CONCLUSION: In summary, all betalains display anti-inflammatory properties, although only betacyanins demonstrate radical scavenging capacities, indicating potential differing responses under oxidative stress conditions, which requires further research.


Asunto(s)
Betacianinas , Betaxantinas , Animales , Ratones , Betacianinas/farmacología , Betaxantinas/farmacología , Betaxantinas/metabolismo , Especies Reactivas de Oxígeno , Peróxido de Hidrógeno , Betalaínas/farmacología , Betalaínas/química , Estrés Oxidativo , Antiinflamatorios/farmacología
10.
Food Res Int ; 166: 112558, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36914337

RESUMEN

To get the most accurate food digestion-related data, and how this affects nutrient absorption, it is critical to carefully simulate human digestion systems using model settings. In this study, the uptake and transepithelial transportation of dietary carotenoids was compared using two different models that have previously been used to assess nutrient availability. The permeability of differentiated Caco-2 cells and murine intestinal tissue were tested using all-trans-ß-carotene and lutein prepared in artificial mixed micelles and micellar fraction from orange-fleshed sweet potato (OFSP) gastrointestinal digestion. Transepithelial transport and absorption efficiency were then determined using liquid chromatography tandem-mass spectrometry (LCMS-MS). Results showed that the mean uptake for all-trans-ß-carotene in the mouse mucosal tissue was 60.2 ± 3.2% compared to 36.7 ± 2.6% in the Caco-2 cells with the mixed micelles as the test sample. Similarly, the mean uptake was higher in OFSP with 49.4 ± 4.1% following mouse tissue uptake compared to 28.9 ± 4.3% using Caco-2 cells for the same concentration. In relation to the uptake efficiency, the mean percentage uptake for all-trans-ß-carotene from artificial mixed micelles was 1.8-fold greater in mouse tissue compared to Caco-2 cells (35.4 ± 1.8% against 19.9 ± 2.6%). Carotenoid uptake reached saturation at 5 µM when assessed with the mouse intestinal cells. These results demonstrate the practicality of employing physiologically relevant models simulating human intestinal absorption processes that compares well with published human in vivo data. When used in combination with the Infogest digestion model, the Ussing chamber model, using murine intestinal tissue, may thus be an efficient predictor of carotenoid bioavailability in simulating human postprandial absorption ex vivo.


Asunto(s)
Carotenoides , beta Caroteno , Humanos , Ratones , Animales , Carotenoides/metabolismo , beta Caroteno/análisis , Células CACO-2 , Micelas , Absorción Intestinal , Digestión
11.
Food Chem ; 406: 134989, 2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-36527987

RESUMEN

With very little research exploring intestinal effects of red beetroot consumption, the present pilot study investigated gut microbial changes following red beetroot consumption, via a 14-day intervention trial in healthy adults. Compared to baseline, the study demonstrates transient changes in abundance of some taxa e.g., Romboutsia and Christensenella, after different days of intervention (p < 0.05). Enrichment of Akkermansia muciniphila and decrease of Bacteroides fragilis (p < 0.05) were observed after 3 days of juice consumption, followed by restoration in abundance after 14 days. With native betacyanins and catabolites detected in stool after juice consumption, betacyanins were found to correlate positively with Bifidobacterium and Coprococcus, and inversely with Ruminococcus (p < 0.1), potentiating a significant rise in (iso)butyric acid content (172.7 ± 30.9 µmol/g stool). Study findings indicate the potential of red beetroot to influence gut microbial populations and catabolites associated with these changes, emphasizing the potential benefit of red beetroot on intestinal as well as systemic health.


Asunto(s)
Beta vulgaris , Microbioma Gastrointestinal , Adulto , Humanos , Proyectos Piloto , Voluntarios Sanos , Betacianinas/farmacología , Alimentos
12.
Food Energy Secur ; 12(2): e406, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38440694

RESUMEN

Micronutrient deficiencies (hidden hunger), particularly in iron (Fe) and zinc (Zn), remain one of the most serious public health challenges, affecting more than three billion people globally. A number of strategies are used to ameliorate the problem of micronutrient deficiencies and to improve the nutritional profile of food products. These include (i) dietary diversification, (ii) industrial food fortification and supplements, (iii) agronomic approaches including soil mineral fertilisation, bioinoculants and crop rotations, and (iv) biofortification through the implementation of biotechnology including gene editing and plant breeding. These efforts must consider the dietary patterns and culinary preferences of the consumer and stakeholder acceptance of new biofortified varieties. Deficiencies in Zn and Fe are often linked to the poor nutritional status of agricultural soils, resulting in low amounts and/or poor availability of these nutrients in staple food crops such as common bean. This review describes the genes and processes associated with Fe and Zn accumulation in common bean, a significant food source in Africa that plays an important role in nutritional security. We discuss the conventional plant breeding, transgenic and gene editing approaches that are being deployed to improve Fe and Zn accumulation in beans. We also consider the requirements of successful bean biofortification programmes, highlighting gaps in current knowledge, possible solutions and future perspectives.

13.
Antioxidants (Basel) ; 11(8)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36009345

RESUMEN

The present study aimed to compare the absorption and transport patterns of three main betalains, betanin, vulgaxanthin I and indicaxanthin, into intestinal epithelial cells and to assess their distinct molecular effects on inflammatory and redox-related cell signalling in association with their radial scavenging potencies. All three betalains showed anti-inflammatory effects (5-80 µM), reflected by attenuated transcription of pro-inflammatory mediators such as cyclooxygenase-2 and inducible NO-synthase. Concomitant increases in antioxidant enzymes such as heme oxygenase-1 were only observed for betanin. Moreover, betanin uniquely demonstrated a potent dose-dependent radical scavenging activity in EPR and cell-based assays. Results also indicated overall low permeability for the three betalains with Papp of 4.2-8.9 × 10-7 cm s-1. Higher absorption intensities of vulgaxanthin and indicaxanthin may be attributed to smaller molecular sizes and greater lipophilicity. In conclusion, betanin, vulgaxanthin I and indicaxanthin have differentially contributed to lowering inflammatory markers and mitigating oxidative stress, implying the potential to ameliorate inflammatory intestinal disease. Compared with two betaxanthins, the greater efficacy of betanin in scavenging radical and promoting antioxidant response might, to some extent, compensate for its poorer absorption efficiency, as demonstrated by the Caco-2 cell model.

14.
Food Chem ; 385: 132632, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35303651

RESUMEN

The present study focused on the development of a new purification protocol suitable for betanin and other major betalains, vulgaxanthin I, indicaxanthin and neobetanin, using flash chromatography which is a convenient and fast method to isolate unstable materials. Following preliminary tests, a gradient procedure using 0-60% acetonitrile, with 0.1% (v/v) formic acid as mobile phase, was selected for the purification. Different fractions were collected based on UV detection at 254 and 280 nm and purities were confirmed by reverse-phase HPLC analysis to be 97%, 95%, 79% and 52% for betanin, indicaxanthin, vulgaxanthin I, and neobetanin, respectively, with pigment yields ranging from 120 to 487 mg per 100 g of powdered raw material. Comparative assessment of antioxidant and radial scavenging properties of individual betalains indicated highest potential for betanin followed by neobetanin, vulgaxanthin I and indicaxanthin.


Asunto(s)
Antioxidantes , Betalaínas , Antioxidantes/química , Betalaínas/química , Cromatografía Líquida de Alta Presión , Extractos Vegetales/química
15.
Food Funct ; 13(3): 1280-1290, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35024710

RESUMEN

Chickpeas are among the lowest glycaemic index carbohydrate foods eliciting protracted digestion and enhanced satiety responses. In vitro studies suggest that mechanical processing of chickpeas significantly increases starch digestion. However, there is little evidence regarding the impact of processing on postprandial glycaemic response in response to chickpea intake in vivo. Therefore, the aim of this study was to determine the effect of mechanical processing on postprandial interstitial glycaemic and satiety responses in humans. In a randomised crossover design, thirteen normoglycaemic adults attended 4 separate laboratory visits following an overnight fast. On each occasion, one of four test meals, matched for available carbohydrate content and consisting of different physical forms of chickpeas (whole, puree, and pasta) or control (mashed potato), was administered followed by a subsequent standardised lunch meal. Continuous glucose monitoring captured interstitial glucose responses, accompanied by periodic venous blood samples for retrospective analysis of C-peptide, glucagon like peptide-1 (GLP-1), ghrelin, leptin, resistin, and cortisol. Subjective appetite responses were measured by Visual Analogue Scale (VAS). Postprandial glycaemic responses were comparable between chickpea treatments albeit significantly lower than the control (p < 0.001). Similarly, all chickpea treatments elicited significantly lower C-peptide and GLP-1 responses compared to the control (p < 0.05), accompanied by enhanced subjective satiety responses (p < 0.05), whilst no significant differences in satiety hormones were detected among different intervention groups (p > 0.05). Chickpea consumption elicits low postprandial glycaemic responses and enhanced subjective satiety responses irrespective of processing methods.


Asunto(s)
Apetito/fisiología , Glucemia/fisiología , Cicer/metabolismo , Manipulación de Alimentos/métodos , Insulina/fisiología , Periodo Posprandial/fisiología , Respuesta de Saciedad/fisiología , Adolescente , Adulto , Anciano , Estudios Cruzados , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
16.
Eur J Nutr ; 61(2): 809-824, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34585281

RESUMEN

PURPOSE: Findings from randomized controlled trials (RCTs) evaluating the effect of pulse intake on glycemic control are inconsistent and conclusive evidence is lacking. The aim of this study was to systematically review the impact of pulse consumption on post-prandial and long-term glycemic control in adults with and without type 2 diabetes (T2D). METHODS: Databases were searched for RCTs, reporting outcomes of post-prandial and long-term interventions with different pulse types on parameters of glycemic control in normoglycemic and T2D adults. Effect size (ES) was calculated using random effect model and meta-regression was conducted to assess the impact of various moderator variables such as pulse type, form, dose, and study duration on ES. RESULTS: From 3334 RCTs identified, 65 studies were eligible for inclusion involving 2102 individuals. In acute RCTs, pulse intake significantly reduced peak post-prandial glucose concentration in participants with T2D (ES - 2.90; 95%CI - 4.60, - 1.21; p ≤ 0.001; I2 = 93%) and without T2D (ES - 1.38; 95%CI - 1.78, - 0.99; p ≤ 0.001; I2 = 86%). Incorporating pulse consumption into long-term eating patterns significantly attenuated fasting glucose in normoglycemic adults (ES - 0.06; 95%CI - 0.12, 0.00; p ≤ 0.05; I2 = 30%). Whereas, in T2D participants, pulse intake significantly lowered fasting glucose (ES - 0.54; 95%CI - 0.83, - 0.24; p ≤ 0.001; I2 = 78%), glycated hemoglobin A1c (HbA1c) (ES - 0.17; 95%CI - 0.33, 0.00; p ≤ 0.05; I2 = 78) and homeostatic model assessment of insulin resistance (HOMA-IR) (ES - 0.47; 95%CI - 1.25, - 0.31; p ≤ 0.05; I2 = 79%). CONCLUSION: Pulse consumption significantly reduced acute post-prandial glucose concentration > 1 mmol/L in normoglycemic adults and > 2.5 mmol/L in those with T2D, and improved a range of long-term glycemic control parameters in adults with and without T2D. PROSPERO REGISTRY NUMBER: (CRD42019162322).


Asunto(s)
Diabetes Mellitus Tipo 2 , Control Glucémico , Adulto , Glucemia/análisis , Hemoglobina Glucada/análisis , Frecuencia Cardíaca , Humanos , Insulina , Ensayos Clínicos Controlados Aleatorios como Asunto
17.
Nutr Rev ; 80(6): 1723-1737, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-34927694

RESUMEN

CONTEXT: Hibiscus sabdariffa (hibiscus) has been proposed to affect cardiovascular risk factors. OBJECTIVE: To review the evidence for the effectiveness of hibiscus in modulating cardiovascular disease risk markers, compared with pharmacologic, nutritional, or placebo treatments. DATA SOURCES: A systematic search of the Web of Science, Cochrane, Ovid (MEDLINE, Embase, AMED), and Scopus databases identified reports published up to June 2021 on randomized controlled trials using hibiscus as an intervention for lipid profiles, blood pressure (BP), and fasting plasma glucose levels in adult populations. DATA EXTRACTION: Seventeen chronic trials were included. Quantitative data were examined using a random effects meta-analysis and meta-regression with trial sequential analysis to account for type I and type II errors. DATA ANALYSIS: Hibiscus exerted stronger effects on systolic BP (-7.10 mmHg [95%CI, -13.00, -1.20]; I2 = 95%; P = 0.02) than placebo, with the magnitude of reduction greatest in those with elevated BP at baseline. Hibiscus induced reductions to BP similar to that resulting from medication (systolic BP reduction, 2.13 mmHg [95%CI, -2.81, 7.06], I2 = 91%, P = 0.40; diastolic BP reduction, 1.10 mmHg [95%CI, -1.55, 3.74], I2 = 91%, P = 0.42). Hibiscus also significantly lowered levels of low-density lipoprotein compared with other teas and placebo (-6.76 mg/dL [95%CI, -13.45, -0.07]; I2 = 64%; P = 0.05). CONCLUSIONS: Regular consumption of hibiscus could confer reduced cardiovascular disease risk. More studies are warranted to establish an effective dose response and treatment duration. SYSTEMATIC REVIEW REGISTRATION: PROSPERO registration no. CRD42020167295.


Asunto(s)
Enfermedades Cardiovasculares , Hibiscus , Hipertensión , Adulto , Biomarcadores , Presión Sanguínea , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/prevención & control , Humanos , Hipertensión/tratamiento farmacológico , Hipertensión/epidemiología
18.
Appetite ; 165: 105427, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34051275

RESUMEN

With a dramatic increase in overweight and population with obesity over the last decades, there is an imminent need to tackle this issue using novel strategies. Addressing obesity issues by generating satiety in food to reduce energy intake has been one of those prominent strategies and often textural interventions have been used to generate satiety, specifically in short-term trials. This study aimed to investigate the role of preloads varying in their oral lubricating properties on appetite sensations, food intake, salivary friction and concentration of salivary biomarkers (proteins, α-amylase and mucins) in collected human saliva (n = 17 healthy participants). The preloads were model foods (flavoured hydrogels) either high or low in their lubricating properties, assessed both by instrumental and sensorial measurements. The results showed that hunger and desire to eat decreased immediately after preload and remained decreased for 10 and 20 min, respectively, after preload in the high lubricating condition compared to control (all p < 0.05). Fullness increased immediately after preload and remained increased for 10 and 20 min, respectively, after preload in high lubricating condition compared to control (p < 0.05). However, after controlling the values for baseline, such significant effect of the intervention did not exist anymore. Only the effect of time is observed. Consuming high lubricating hydrogels showed no effect on food intake and salivary biomarkers in this pilot study. Salivary lubrication correlated with feeling of fullness. Considering the issue of large time-interval (30 min) between preload and next meal in this study, it is worthwhile investigating the immediate effects of oral lubrication on appetite control, food intake and salivary biomarkers.


Asunto(s)
Apetito , Saciedad , Biomarcadores , Ingestión de Alimentos , Ingestión de Energía , Humanos , Lubrificación , Proyectos Piloto
19.
Curr Res Food Sci ; 4: 141-149, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33778774

RESUMEN

There is emerging evidence on the importance of food-derived bioactive peptides to promote human health. Compared with animal derived proteins, plant proteins, in particular oilseed proteins, are considered as affordable and sustainable sources of bioactive peptides. Based on our previous bioinformatic analysis, five oilseed proteins (flaxseed, rapeseed, sunflower, sesame and soybean) were enzymatically hydrolysed using alcalase and pepsin (pH 1.3 and pH 2.1). Further, low molecular weight (Mw â€‹< â€‹3 â€‹kDa) fractions were generated using ultrafiltration. The protein hydrolysates and their low Mw fractions were evaluated for their in vitro antioxidant, antihypertensive and antidiabetic capabilities, in comparison with samples obtained from two dairy proteins (whey and casein). Apart from dipeptidyl-peptidase IV inhibition, significantly stronger bioactivities were detected for the low Mw fractions. In partial agreement with in silico predictions, most oilseed hydrolysates exerted comparable angiotensin-converting enzyme inhibitory capability to dairy proteins, whilst whey protein was the most promising source of dipeptidyl-peptidase IV inhibitors. Apart from alcalase-treated soybean, dairy proteins were more efficient in releasing antioxidant peptides as compared to oilseed proteins. On the other hand, soybean protein hydrolysates showed the highest α-glucosidase inhibitory activity amongst all protein sources. Overall, there was limited correlation between in silico predictions and in vitro experimental results. Nevertheless, our results indicate that oilseed proteins have potential as bioactive peptide sources, and they might therefore be suitable replacers for dairy proteins as well as good sources for development of functional foods.

20.
Curr Res Food Sci ; 3: 178-188, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32914133

RESUMEN

The aim of this study was to investigate the fate of curcumin (CUR)-loaded Pickering emulsions with complex interfaces during in vitro gastrointestinal transit and test the efficacy of such emulsions on improving the bioaccessibility and cellular uptake of CUR. CUR-loaded Pickering emulsions tested were whey protein nanogel particle-stabilized Pickering emulsions (CUR-EWPN) and emulsions displaying complex interfaces included 1) layer-by-layer dextran sulphate-coated nanogel-stabilized Pickering emulsions (CUR-DxS+EWPN) and 2) protein+dextran-conjugated microgel-stabilized Pickering emulsions (CUR-EWPDxM). The hypothesis was that the presence of complex interfacial material at the droplet surface would provide better protection to the droplets against physiological degradation, particularly under gastric conditions and thus, improve the delivery of CUR to Caco-2 intestinal cells. The emulsions were characterized using droplet sizing, apparent viscosity, confocal and cryo-scanning electron microscopy, zeta-potential, lipid digestion kinetics, bioaccessibility of CUR as well as cell viability and uptake by Caco-2 cells. Emulsion droplets with modified to complex interfacial composition (i.e. CUR-DxS+EWPN and CUR-EWPDxM) provided enhanced kinetic stability to the Pickering emulsion droplets against coalescence in the gastric regime as compared to droplets having unmodified interface (i.e. CUR-EWPN), whereas droplet coalescence occurred in intestinal conditions irrespective of the initial interfacial materials. A similar rate and extent of free fatty acid release occurred in all the emulsions during intestinal digestion (p > 0.05), which correlated with the bioaccessibility of CUR. Striking, CUR-DxS+EWPN and CUR-EWPDxM significantly improved cellular CUR uptake as compared to CUR-EWPN (p < 0.05). These results highlight a promising new strategy of designing gastric-stable Pickering emulsions with complex interfaces to improve the delivery of lipophilic bioactive compounds to the cells for the future design of functional foods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...