Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 598(7879): 205-213, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616060

RESUMEN

During mammalian development, differences in chromatin state coincide with cellular differentiation and reflect changes in the gene regulatory landscape1. In the developing brain, cell fate specification and topographic identity are important for defining cell identity2 and confer selective vulnerabilities to neurodevelopmental disorders3. Here, to identify cell-type-specific chromatin accessibility patterns in the developing human brain, we used a single-cell assay for transposase accessibility by sequencing (scATAC-seq) in primary tissue samples from the human forebrain. We applied unbiased analyses to identify genomic loci that undergo extensive cell-type- and brain-region-specific changes in accessibility during neurogenesis, and an integrative analysis to predict cell-type-specific candidate regulatory elements. We found that cerebral organoids recapitulate most putative cell-type-specific enhancer accessibility patterns but lack many cell-type-specific open chromatin regions that are found in vivo. Systematic comparison of chromatin accessibility across brain regions revealed unexpected diversity among neural progenitor cells in the cerebral cortex and implicated retinoic acid signalling in the specification of neuronal lineage identity in the prefrontal cortex. Together, our results reveal the important contribution of chromatin state to the emerging patterns of cell type diversity and cell fate specification and provide a blueprint for evaluating the fidelity and robustness of cerebral organoids as a model for cortical development.


Asunto(s)
Encéfalo/citología , Epigenómica , Neurogénesis , Análisis de la Célula Individual , Atlas como Asunto , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Susceptibilidad a Enfermedades , Elementos de Facilitación Genéticos , Humanos , Neuronas/citología , Neuronas/metabolismo , Organoides/citología , Tretinoina/metabolismo
2.
Sci Adv ; 7(17)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33883145

RESUMEN

Single-cell RNA sequencing (scRNA-seq) of tissues has revealed remarkable heterogeneity of cell types and states but does not provide information on the spatial organization of cells. To better understand how individual cells function within an anatomical space, we developed XYZeq, a workflow that encodes spatial metadata into scRNA-seq libraries. We used XYZeq to profile mouse tumor models to capture spatially barcoded transcriptomes from tens of thousands of cells. Analyses of these data revealed the spatial distribution of distinct cell types and a cell migration-associated transcriptomic program in tumor-associated mesenchymal stem cells (MSCs). Furthermore, we identify localized expression of tumor suppressor genes by MSCs that vary with proximity to the tumor core. We demonstrate that XYZeq can be used to map the transcriptome and spatial localization of individual cells in situ to reveal how cell composition and cell states can be affected by location within complex pathological tissue.


Asunto(s)
Neoplasias , Análisis de la Célula Individual , Animales , Perfilación de la Expresión Génica , Ratones , Neoplasias/genética , Análisis de Secuencia de ARN , Transcriptoma , Microambiente Tumoral/genética , Secuenciación del Exoma
3.
Science ; 370(6522)2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33303586

RESUMEN

Determining structures of protein complexes is crucial for understanding cellular functions. Here, we describe an integrative structure determination approach that relies on in vivo measurements of genetic interactions. We construct phenotypic profiles for point mutations crossed against gene deletions or exposed to environmental perturbations, followed by converting similarities between two profiles into an upper bound on the distance between the mutated residues. We determine the structure of the yeast histone H3-H4 complex based on ~500,000 genetic interactions of 350 mutants. We then apply the method to subunits Rpb1-Rpb2 of yeast RNA polymerase II and subunits RpoB-RpoC of bacterial RNA polymerase. The accuracy is comparable to that based on chemical cross-links; using restraints from both genetic interactions and cross-links further improves model accuracy and precision. The approach provides an efficient means to augment integrative structure determination with in vivo observations.


Asunto(s)
Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Mapas de Interacción de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Histonas/química , Histonas/genética , Mutación , Conformación Proteica , Mapeo de Interacción de Proteínas , Saccharomyces cerevisiae/genética
4.
Cell ; 174(4): 953-967.e22, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30033366

RESUMEN

Seminal yeast studies have established the value of comprehensively mapping genetic interactions (GIs) for inferring gene function. Efforts in human cells using focused gene sets underscore the utility of this approach, but the feasibility of generating large-scale, diverse human GI maps remains unresolved. We developed a CRISPR interference platform for large-scale quantitative mapping of human GIs. We systematically perturbed 222,784 gene pairs in two cancer cell lines. The resultant maps cluster functionally related genes, assigning function to poorly characterized genes, including TMEM261, a new electron transport chain component. Individual GIs pinpoint unexpected relationships between pathways, exemplified by a specific cholesterol biosynthesis intermediate whose accumulation induces deoxynucleotide depletion, causing replicative DNA damage and a synthetic-lethal interaction with the ATR/9-1-1 DNA repair pathway. Our map provides a broad resource, establishes GI maps as a high-resolution tool for dissecting gene function, and serves as a blueprint for mapping the genetic landscape of human cells.


Asunto(s)
Biomarcadores/metabolismo , Colesterol/metabolismo , Epistasis Genética , Redes Reguladoras de Genes , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Células Jurkat , Células K562 , Mapeo de Interacción de Proteínas
5.
Bioeng Transl Med ; 2(1): 9-16, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28503662

RESUMEN

Oral delivery of therapeutics is the preferred route for systemic drug administration due to ease of access and improved patient compliance. However, many therapeutics suffer from low oral bioavailability due to low pH and enzymatic conditions, poor cellular permeability, and low residence time. Microfabrication techniques have been used to create planar, asymmetric microdevices for oral drug delivery to address these limitations. The geometry of these microdevices facilitates prolonged drug exposure with unidirectional release of drug toward gastrointestinal epithelium. While these devices have significantly enhanced drug permeability in vitro and in vivo, loading drug into the micron-scale reservoirs of the devices in a low-waste, high-capacity manner remains challenging. Here, we use picoliter-volume inkjet printing to load topotecan and insulin into planar microdevices efficiently. Following a simple surface functionalization step, drug solution can be spotted into the microdevice reservoir. We show that relatively high capacities of both topotecan and insulin can be loaded into microdevices in a rapid, automated process with little to no drug waste.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...