RESUMEN
Acute renal ischemia/reperfusion (I/R) injury is a clinical condition that is challenging to treat. Meldonium is an anti-ischemic agent that shifts energy production from fatty acid oxidation to less oxygen-consuming glycolysis. Thus, in this study we investigated the effects of a four-week meldonium pre-treatment (300 mg/kg b.m./day) on acute renal I/R in male rats (Wistar strain). Our results showed that meldonium decreased animal body mass gain, food and water intake, and carnitine, glucose, and lactic acid kidney content. In kidneys of animals subjected to I/R, meldonium increased phosphorylation of mitogen-activated protein kinase p38 and protein kinase B, and increased the expression of nuclear factor erythroid 2-related factor 2 and haeme oxygenase 1, causing manganese superoxide dismutase expression and activity to increase, as well as lipid peroxidation, cooper-zinc superoxide dismutase, glutathione peroxidase, and glutathione reductase activities to decrease. By decreasing the kidney Bax/Bcl2 expression ratio and kidney and serum high mobility group box 1 protein content, meldonium reduced apoptotic and necrotic events in I/R, as confirmed by kidney histology. Meldonium increased adrenal noradrenaline content and serum, adrenal, hepatic, and renal ascorbic/dehydroascorbic acid ratio, which caused complex changes in renal lipidomics. Taken together, our results have confirmed that meldonium pre-treatment protects against I/R-induced oxidative stress and apoptosis/necrosis.
Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Metilhidrazinas/uso terapéutico , Daño por Reperfusión/tratamiento farmacológico , Animales , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Masculino , Norepinefrina/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Ratas , Ratas Wistar , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patologíaRESUMEN
Chronic inflammation plays an essential role in the development of diabetic complications. Understanding the molecular mechanisms that support inflammation is a prerequisite for the design of novel anti-inflammatory therapies. These would take into consideration circulating levels of cytokines and damage-associated molecular patterns (DAMPs) that include the high mobility group box 1 (HMGB1) protein which, in part, promotes the inflammatory response through TLR4 signaling. The liver, as the source of circulating cytokines and acute-phase proteins, contributes to the control of systemic inflammation. We previously found that liver injury in streptozotocin-induced diabetic rats correlated with the level of oxidative stress, increased expression of HMGB1, and with the activation of TLR4-mediated cell death pathways. In the present work, we examined the effects of ethyl pyruvate (EP), an inhibitor of HMGB1 release/expression, on the modulation of activation of the HMGB1/TLR4 inflammatory cascade in diabetic liver. We observed that increased expression of inflammatory markers, TNF-α, IL-6, and haptoglobin in diabetic liver was associated with increased HMGB1/TLR4 interaction, activation of MAPK (p38, ERK, JNK)/NF-κB p65 and JAK1/STAT3 signaling pathways, and with decreased expression of Nrf2-regulated antioxidative enzymes. The reduction in HMGB1 expression as the result of EP administration reduced the pro-inflammatory activity of HMGB1 and exerted a protective effect on diabetic liver, which was observed as improved liver histology and antioxidant and inflammatory statuses. Our results suggest that prevention of HMGB1 release and blockage of the HMGB/TLR4 axis represents a potentially effective therapeutic strategy aimed at ameliorating diabetes-induced inflammation and ensuing liver injury.
Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Proteína HMGB1/metabolismo , Inflamación/metabolismo , Hepatopatías/complicaciones , Receptor Toll-Like 4/metabolismo , Animales , Biomarcadores/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Haptoglobinas/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Humanos , Interleucina-6/metabolismo , Hepatopatías/metabolismo , Hepatopatías/patología , Sistema de Señalización de MAP Quinasas , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Quinasas/metabolismo , Piruvatos/farmacología , Ratas Wistar , Estreptozocina , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
The progression of oxidative stress, resulting cell damage, and cell death underlies the etiology of liver damage/dysfunction as a complication of diabetes. High-mobility group box 1 (HMGB1) protein, a chromatin-binding nuclear protein and damage-associated molecular pattern molecule, is integral to oxidative stress and signaling pathways regulating cell death and cell survival. We previously found that in streptozotocin (STZ)-induced diabetic rats, reduction of oxidative stress after melatonin administration lowered necrotic cell death and increased expression of HMGB1 and hepatocellular damage. In the present study, we examined whether alleviation of diabetes-attendant oxidative stress and ensuing change in HMGB1 expression influence the dynamic equilibrium between apoptosis/autophagy and liver damage. We observed that elevated HMGB1 protein levels in diabetic rat liver accompanied increased interactions of HMGB1 with TLR4 and RAGE, and activation of the intrinsic apoptotic pathway and Beclin 1-dependent autophagy. The absence of p62 degradation in diabetic rat liver pointed to defective autophagy which was responsible for lower autophagosome/autophagolysosome formation and an increased apoptosis/autophagy ratio. Compared to diabetic rats, in melatonin-treated diabetic rats, the structure of liver cells was preserved, HMGB1/TLR4 interaction and downstream apoptotic signaling were significantly reduced, HMGB1/Beclin 1 colocalization and interactions were augmented and Beclin 1-mediated autophagy, mithophagy in particular, were increased. We concluded that in mild oxidative stress, HMGB1 is cytoprotective, whereas in intense oxidative stress, HMGB1 actions promote cell death and liver damage. Since reduced HMGB1 binds to RAGE but not to TLR4, redox modification of HMGB1 as a mechanism regulating the cross-talk between apoptosis and autophagy in diabetes is discussed.
Asunto(s)
Apoptosis/fisiología , Autofagia/fisiología , Diabetes Mellitus Experimental/patología , Proteína HMGB1/fisiología , Hígado/patología , Estrés Oxidativo , Animales , RatasRESUMEN
The Anacardiaceae Lindl. family comprises of many species which are used in nutrition and in traditional folk medicine for the treatment of several human diseases. Cotinus coggygria Scop. commonly known as "smoke tree", is a commercial ornamental plant with high medicinal usages, belongs to the family Anacardiaceae. The present review provides a comprehensive report of empirical investigations on important pharmacological activities and phytochemical screening of essential oils and extracts. Relevant information was collected from scientific journals, books, and reports via library and electronic search using Medline, PubMed, Google Scholar, ScienceDirect, Web of Science, and Scopus. The plant has been extensively investigated in a broad range of studies to provide scientific evidence for folklore claims or to find new therapeutic uses. Numerous activities namely antioxidative, antibacterial, antifungal, antiviral, anticancer, antigenotoxic, hepatoprotective and anti-inflammatory have been demonstrated for all parts of these plants by in vivo and in vitro studies. Essential oils and extracts showed various pharmacological and biological properties which make them an effective remedy for various kinds of illnesses. Considering data from the literature, it could be demonstrated that C. coggygria possesses diverse bioactive properties and immense utilization in medicine, health care, cosmetics and as health supplements.
RESUMEN
Diabetes is a risk factor for cardiovascular disease that has a multifactorial etiology, with oxidative stress as an important component. Our previous observation of a significant diabetes-related increase in rat cardiac catalase (CAT) activity suggested that CAT could play a major role in delaying the development of diabetic cardiomyopathy. Thus, in the present work, we examined the effects of the daily administration of the CAT inhibitor, 3-amino-1,2,4-triazole (1 mg/g), on the hearts of streptozotocin (STZ)-induced diabetic rats. Administration of CAT inhibitor was started from the 15th day after the last STZ treatment (40 mg/kg/5 days), and maintained until the end of the 4th or 6th weeks of diabetes. Compared to untreated diabetic rats, at the end of the observation period, CAT inhibition lowered the induced level of cardiac CAT activity to the basal level and decreased CAT protein expression, mediated through a decline in the nuclear factor erythroid-derived 2-like 2 /nuclear factor-kappa B p65 (Nrf2/NF-κB p65) subunit ratio. The perturbed antioxidant defenses resulting from CAT inhibition promoted increased H2O2production (P < 0.05) and lipid peroxidation (P < 0.05). Generated cytotoxic stimuli increased DNA damage (P < 0.05) and activated pro-apoptotic events, observed as a decrease (P < 0.05) in the ratio of the apoptosis regulator proteins Bcl-2/Bax, increased (P < 0.05) presence of the poly(ADP-ribose) polymerase-1 (PARP-1) 85 kDa apoptotic fragment and cytoplasmic levels of cytochrome C. These findings confirm an important function of CAT in the suppression of events leading to diabetes-promoted cardiac dysfunction and cardiomyopathy.
Asunto(s)
Catalasa/fisiología , Daño del ADN , Diabetes Mellitus Experimental/complicaciones , Cardiomiopatías Diabéticas/etiología , Amitrol (Herbicida)/farmacología , Animales , Apoptosis , Catalasa/antagonistas & inhibidores , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/patología , Cardiomiopatías Diabéticas/enzimología , Cardiomiopatías Diabéticas/patología , Inhibidores Enzimáticos/farmacología , Masculino , Miocardio/enzimología , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Ratas Wistar , Transducción de SeñalRESUMEN
Oxidative stress-mediated damage to liver tissue underlies the pathological alterations in liver morphology and function that are observed in diabetes. We examined the effects of the antioxidant action of melatonin against necrosis-inducing DNA damage in hepatocytes of streptozotocin (STZ)-induced diabetic rats. Daily administration of melatonin (0.2 mg/kg) was initiated 3 days before diabetes induction and maintained for 4 weeks. Melatonin-treated diabetic rats exhibited improved markers of liver injury (P < 0.05), alkaline phosphatase, and alanine and aspartate aminotransferases. Melatonin prevented the diabetes-related morphological deterioration of hepatocytes, DNA damage (P < 0.05), and hepatocellular necrosis. The improvement was due to containment of the pronecrotic oxygen radical load, observed as inhibition (P < 0.05) of the diabetes-induced rise in lipid peroxidation and hydrogen peroxide increase in the liver. This was accompanied by improved necrotic markers of cellular damage: a significant reduction in cleavage of the DNA repair enzyme poly(ADP-ribose) polymerase 1 (PARP-1) into necrotic 55- and 62-kDa fragments, and inhibition of nucleus-to-cytoplasm translocation and accumulation in the serum of the high-mobility group box 1 (HMGB1) protein. We conclude that melatonin is hepatoprotective in diabetes. It reduces extensive DNA damage and resulting necrotic processes. Melatonin application could thus present a viable therapeutic option in the management of diabetes-induced liver injury.
Asunto(s)
Diabetes Mellitus Experimental/patología , Melatonina/farmacología , Animales , Western Blotting , Masculino , Necrosis , Estrés Oxidativo , Ratas , Ratas Wistar , EstreptozocinaRESUMEN
The present study was undertaken to investigate the hepatoprotective effect of the methanol extract of Cotinus coggygria Scop. in rats exposed to the hepatotoxic compound pyrogallol. Assessed with the alkaline version of the comet assay, 1000 and 2000mg/kg body weight (bw) of the extract showed a low level of genotoxicity, while 500mg/kg bw of the extract showed no genotoxic potential. Quantitative HPLC analysis of phenolic acids and flavonoids in the methanol extract of C. coggygria showed that myricetin was a major component. To test the hepatoprotective effect, a non-genotoxic dose of the C. coggygria extract and an equivalent amount of synthetic myricetin, as present in the extract, were applied either 2 or 12h prior to administration of 100mg/kg bw of pyrogallol. The extract and myricetin promoted restoration of hepatic function by significantly reducing pyrogallol-induced elevation in the serum enzymes AST, ALT, ALP and in total bilirubin. As measured by the decrease in total score and tail moment, the DNA damage in liver was also reduced by the extract and by myricetin. Our results suggest that pro-surviving Akt activity and STAT3 protein expression play important roles in decreasing DNA damage and in mediating hepatic protection by the extract. These results suggest that myricetin, as a major component in the extract, is responsible for the antigenotoxic and hepatoprotective properties of the methanol extract of C. coggygria against pyrogallol-induced toxicity.
Asunto(s)
Anacardiaceae/química , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Daño del ADN/efectos de los fármacos , Flavonoides/farmacología , Hígado/efectos de los fármacos , Extractos Vegetales/farmacología , Pirogalol/toxicidad , Alanina Transaminasa/sangre , Fosfatasa Alcalina/sangre , Animales , Aspartato Aminotransferasas/sangre , Bilirrubina/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Ensayo Cometa , Flavonoides/aislamiento & purificación , Depuradores de Radicales Libres/aislamiento & purificación , Depuradores de Radicales Libres/farmacología , Hidroxibenzoatos/aislamiento & purificación , Hidroxibenzoatos/farmacología , Masculino , Metanol , Tallos de la Planta/química , Plantas Medicinales/química , Ratas , Ratas Wistar , SolventesRESUMEN
AIMS: Diabetes-related oxidative stress conditions lead to progressive tissue damage and disfunctionality. Mechanisms underlying liver pathophysiology during diabetes are not fully understood. The aim of this study was to find relationship between diabetes-related DNA damage in the rat liver and activities of prosurvival signaling pathways. METHODS: Effect of diabetes was analyzed two (development stage) and eight weeks (stable diabetes) after single intraperitoneal injection of streptozotocin. Extent of DNA damage, analysed by comet assay, was corelated with oxidative status (plasma level of ROS, liver antioxidant capacity) and activity/abundance of kinases (Akt, p38, ERK1, JNK, JAK) and transcription factors NF-κB p65 and STAT3. RESULTS: Significant DNA damage in development stage is accompanied by elevated plasma levels of O(2)(-) and H(2)O(2), decreased activities of CAT, MnSOD, and GST in the liver and increased activation of proapoptotic JNK signal pathway. Lower DNA damage in stable diabetes, is accompanied by elevated plasma level of O(2)(-), restored antioxidative liver enzyme activity, decreased activation of JNK and increased activation of prosurvival Akt and ERK signal pathways. CONCLUSION: These findings indicate that level of DNA damage in diabetic liver depends on the extent of oxidative stress, antioxidant activity and balance between JNK and Akt/ERK signal pathways activation .
Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Catalasa/metabolismo , Ensayo Cometa , Daño del ADN , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Glutatión Transferasa/metabolismo , Peróxido de Hidrógeno/sangre , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/metabolismo , Masculino , Ratas , Ratas Wistar , Factor de Transcripción STAT3/metabolismo , Oxígeno Singlete/sangre , Superóxido Dismutasa/metabolismo , Factor de Transcripción ReIA/metabolismoRESUMEN
The objective of this study was to investigate in vitro and in vivo anticoagulant activity of sixteen 4-hydroxycoumarin derivatives bearing polar C-3 scaffolds. The activity was evaluated by measuring prothrombin time. Enhanced anticoagulant activity in vitro was observed for all tested compounds. Upon successive administration of 0.5 mg/kg of body weight to adult Wistar rats, over a period of five days, four derivatives (2b, 4c, 5c and 9c) presented anticoagulant activity in vivo. The most active compound was 2b, with PT = 30.0 s. Low or non-toxic effects in vivo were determined based on the catalytic activity of liver enzymes and the concentration of bilirubin, iron and proteins. Metabolic pathways of the most active compounds in vivo were determined after GC/MS analysis of collected rat urine samples. The excretion occurs by glucuronidation of 7-hydroxy forms of tested derivatives. In vivo results were described using PLS-based CoMFA and CoMSIA 3D-QSAR studies, which showed CoMFA-SE (q(2) = 0.738) and CoMSIA-SEA (q(2) = 0.763) to be the statistically most relevant models. Furthermore, molecular docking and DFT mechanistic studies performed on the rat VKORC1 homology model revealed interactions between the 4-OH coumarin group in the form of phenolic anion and the Cys135 catalytic site in the transition state.
Asunto(s)
Anticoagulantes/química , Anticoagulantes/farmacología , Cumarinas/química , Cumarinas/farmacología , Animales , Anticoagulantes/administración & dosificación , Anticoagulantes/metabolismo , Cumarinas/administración & dosificación , Cumarinas/metabolismo , Diseño de Fármacos , Humanos , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/metabolismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Simulación del Acoplamiento Molecular , Conformación Proteica , Teoría Cuántica , Ratas , Ratas Wistar , Homología de Secuencia de Aminoácido , Vitamina K Epóxido ReductasasRESUMEN
Haptoglobin is a constitutively expressed protein which is predominantly synthesized in the liver. During the acute-phase (AP) response haptoglobin is upregulated along with other AP proteins. Its upregulation during the AP response is mediated by cis-trans interactions between the hormone-responsive element (HRE) residing in the haptoglobin gene and inducible transcription factors STAT3 and C/EBP ß. In male rats that have been subjected to chronic 50% dietary restriction (DR), the basal haptoglobin serum level is decreased. The aim of this study was to characterize the trans-acting factor(s) responsible for the reduction of haptoglobin expression in male rats subjected to 50% DR for 6 weeks. Protein-DNA interactions between C/EBP and STAT families of transcription factors and the HRE region of the haptoglobin gene were examined in livers of male rats subjected to DR, as well as during the AP response that was induced by turpentine administration. In DR rats, we observed associations between the HRE and C/EBPα/ß, STAT5b and NF-κB p50, and the absence of interactions between STAT3 and NF-kB p65. Subsequent induction of the AP response in DR rats by turpentine administration elicited a normal, almost 2-fold increase in the serum haptoglobin level that was accompanied by HRE-binding of C/EBPß, STAT3/5b and NF-kB p65/p50, and the establishment of interaction between STAT3 and NF-κB p65. These results suggest that STAT3 and NF-κB p65 crosstalk plays a central role while C/EBPß acquires an accessory role in establishing the level of haptoglobin gene expression in male rats exposed to DR and AP stimuli.
Asunto(s)
Reacción de Fase Aguda/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Restricción Calórica , Haptoglobinas/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción ReIA/metabolismo , Reacción de Fase Aguda/inducido químicamente , Animales , Western Blotting , Cromatografía de Afinidad , Inmunoprecipitación , Masculino , Ratas , Receptor Cross-Talk/inmunología , Estadísticas no Paramétricas , Trementina/administración & dosificación , Trementina/toxicidadRESUMEN
In peripubertal female rats, we have previously found that 50% food restriction (FR) increases plasma IL-6, haptoglobin and both alanine transaminase (ALT) and alkaline phosphatase (AST) aminotransferases, indicating the existence of an inflammatory response. To study whether such FR influences the hypothalamic-pituitary-adrenal (HPA) axis, we examined by immunohistochemistry the morphofunctional features of pituitary adrenocorticotroppic (ACTH) cells. In FR rats the volume and volume density of ACTH cells as well as plasma ACTH levels were increased by 17.6%, 12.5% and 13.4%, respectively, in comparison with controls (p<0.05). We concluded that chronic FR is a systemic stressor in young females, capable to stimulate the HPA axis, probably as a result of IL-6 action.
Asunto(s)
Hormona Adrenocorticotrópica/metabolismo , Alanina Transaminasa/metabolismo , Fosfatasa Alcalina/metabolismo , Animales , Femenino , Privación de Alimentos , Haptoglobinas/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Inmunohistoquímica/métodos , Interleucina-6/metabolismo , Tamaño de los Órganos , Hipófisis/metabolismo , Ratas , Maduración SexualRESUMEN
The intention was to evaluate the possible in vivo genotoxic potential in different cell-types, of a methanol extract obtained from the plant stem of Cotinus coggygria Scop., using the sex-linked recessive lethal (or SLRL) test and alkaline comet assay. The SLRL test, revealed the genotoxic effect of this extract in postmeiotic and premeiotic germ-cell lines. The comet assay was carried out on rat liver and bone marrow at 24 and 72 h after intraperitoneal administration. For genotoxic evaluation, three concentrations of the extract were tested, viz., 500, 1000 and 2000 mg/kg body weight (bw), based on the solubility limit of the extract in saline. Comet tail moment and total scores in the group treated with 500 mg/kg bw, 24 and 72 h after treatment, were not significantly different from the control group, whereas in the groups of animals, under the same conditions, but with 1000 and 2000 mg/kg bw of the extract, scores were statistically so. A slight decrease in the comet score and tail moment observed in all the doses in the 72 h treatment, gave to understand that DNA damage induced by Cotinus coggygria extract decreased with time. The results of both tests revealed the genotoxic effect of Cotinus coggygria under our experimental conditions.
RESUMEN
To examine the protective potential of the Cotinus coggygria Scop. methanol extract, Wistar rats were treated with the hepatotoxic compound pyrogallol, which possesses a potent ability to generate free radicals and induce oxidative stress. The ability of the extract to counteract the oxidative stress was examined in rats that were injected with the extract intraperitoneally (500 mg·(kg body weight)(-1)) either 2 or 12 h before the pyrogallol treatment. The extract possesses a reducing activity in vitro and an ability to chelate the ferrous ion both in vivo and in vitro. Application of the extract prior to pyrogallol treatment led to a decrease in the levels of thiobarbituric acid-reactive substances, aspartate aminotransferase, and alanine aminotransferase, increased activities of antioxidant enzymes and attenuation of DNA damage, as well as increased Akt activity and inhibition of NF-κB protein expression. Treatment with the extract 12 h prior to pyrogallol administration was more effective in suppressing pyrogallol-induced oxidative damage than the 2 h pretreatment. Extract administration promoted an increase in acute phase reactants haptoglobin and α(2)-macroglobulin that was short of a full-fledged acute phase response. Administration of the extract considerably improved the markers of oxidative stress, thus revealing a potential hepatoprotective activity. Our results suggest that Akt activation, NF-κB inhibition, and induction of the acute phase play important roles in mediating hepatic protection by the extract. The greater effectiveness of the 12 h pretreatment with extract points to the important role that preconditioning assumes in improving resistance to subsequent exposure to oxidative stress.
Asunto(s)
Anacardiaceae , Antioxidantes/farmacología , Hígado/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Pirogalol/toxicidad , Animales , Catalasa/metabolismo , Glutatión/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Hígado/enzimología , Masculino , FN-kappa B/metabolismo , Oxidación-Reducción/efectos de los fármacos , Tallos de la Planta , Sustancias Protectoras/farmacología , Pirogalol/farmacología , Ratas , Ratas Wistar , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Factores de TiempoRESUMEN
The series of fifteen synthesized 4-hydroxycoumarin derivatives was subjected to antioxidant activity evaluation in vitro, through total antioxidant capacity, 1,1-diphenyl-2-picryl-hydrazyl (DPPH), hydroxyl radical, lipid peroxide scavenging and chelating activity. The highest activity was detected during the radicals scavenging, with 2b, 6b, 2c, and 4c noticed as the most active. The antioxidant activity was further quantified by the quantitative structure-activity relationships (QSAR) studies. For this purpose, the structures were optimized using Paramethric Method 6 (PM6) semi-empirical and Density Functional Theory (DFT) B3LYP methods. Bond dissociation enthalpies of coumarin 4-OH, Natural Bond Orbital (NBO) gained hybridization of the oxygen, acidity of the hydrogen atom and various molecular descriptors obtained, were correlated with biological activity, after which we designed 20 new antioxidant structures, using the most favorable structural motifs, with much improved predicted activity in vitro.
Asunto(s)
4-Hidroxicumarinas/química , Antioxidantes/química , Depuradores de Radicales Libres/química , Compuestos de Bifenilo/química , Radicales Libres/química , Peróxidos Lipídicos/química , Modelos Moleculares , Picratos/química , Relación Estructura-Actividad Cuantitativa , Relación Estructura-ActividadRESUMEN
Previously, we showed that administration of the acute-phase protein α(2)-macroglobulin (α(2)M) to rats before total-body irradiation with 6.7 Gy (LD(50/30)) of X-rays provides the same level of radioprotection as amifostine. Here, we compare the cytoprotective effects of α(2)M and amifostine on rat liver. The potential of the liver to replenish cells destroyed by ionizing radiation was assessed by immunoblot analysis with antibody to proliferating cell nuclear antigen (PCNA). After irradiation, in unprotected rats PCNA decreased 6-fold from the basal level. In rats pretreated with either α(2)M or amifostine, PCNA was increased throughout a 4 week follow-up period, indicating that hepatocyte proliferation was unaffected. Since PCNA is an important component of the repair machinery, its increased expression was accompanied by significantly lower DNA damage in α(2)M- and amifostine-treated rats. At 2 weeks after irradiation, the Comet assay revealed a 15-fold increase in DNA damage in unprotected rats, while in α(2)M- and amifostine-treated rats we observed 3- and 4-fold rise in damage, respectively. The improved protection to DNA damage was supported by elevated activity of the antioxidant systems. Compared to untreated rats, pretreatments with α(2)M and amifostine led to similar increases in levels of the inflammatory cytokine IL-6 and the redox-sensitive transcription factor NFκB, promoting upregulation of MnSOD, the major component of the cell's antioxidant axis, and subsequent increases in Mn/CuZnSOD and catalase enzymatic activities. The results show that α(2)M induces protein factors whose interplay underlies radioprotection and support the idea that α(2)M is the central effector of natural radioprotection in the rat.
Asunto(s)
Citoprotección/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/efectos de la radiación , Irradiación Corporal Total , alfa-Macroglobulinas/administración & dosificación , alfa-Macroglobulinas/farmacología , Amifostina/farmacología , Animales , Antioxidantes/metabolismo , Catalasa/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/efectos de la radiación , Interleucina-6/sangre , Hígado/citología , Hígado/metabolismo , Dosis de Radiación , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Factor de Transcripción ReIA/metabolismoRESUMEN
The intention was to evaluate the possible in vivo genotoxic potential in different cell-types, of a methanol extract obtained from the plant stem of Cotinus coggygria Scop., using the sex-linked recessive lethal (or SLRL) test and alkaline comet assay. The SLRL test, revealed the genotoxic effect of this extract in postmeiotic and premeiotic germ-cell lines. The comet assay was carried out on rat liver and bone marrow at 24 and 72 h after intraperitoneal administration. For genotoxic evaluation, three concentrations of the extract were tested, viz., 500, 1000 and 2000 mg/kg body weight (bw), based on the solubility limit of the extract in saline. Comet tail moment and total scores in the group treated with 500 mg/kg bw, 24 and 72 h after treatment, were not significantly different from the control group, whereas in the groups of animals, under the same conditions, but with 1000 and 2000 mg/kg bw of the extract, scores were statistically so. A slight decrease in the comet score and tail moment observed in all the doses in the 72 h treatment, gave to understand that DNA damage induced by Cotinus coggygria extract decreased with time. The results of both tests revealed the genotoxic effect of Cotinus coggygria under our experimental conditions.
RESUMEN
The activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST), the incidence of DNA damage, the activation of poly (ADP-ribose) polymerase-1 (PARP-1), a marker of DNA repair, and connective tissue growth factor (CTGF), a marker of tissue fibrosis, were examined in the hearts of rats for 16 weeks after diabetes induction by streptozotocin (STZ) administration. A 150% increase in CAT activity was detected at the end of the 2nd week post-STZ administration, and CAT activity remained 80% above the control level throughout 16 weeks. While total SOD and CuZn-SOD exhibited progressively decreasing activities, those of Mn-SOD and GST were elevated. Neither DNA strand breaks (apoptosis or necrosis) nor changes in PARP-1 activity and in CTGF levels (fibrosis) were observed in the diabetic heart. The absence of cardiomyopathy is accompanied with increased activities of CAT, MnSOD and GST.
Asunto(s)
Antioxidantes/metabolismo , Catalasa/metabolismo , Diabetes Mellitus Experimental/enzimología , Glutatión Transferasa/metabolismo , Superóxido Dismutasa/metabolismo , Animales , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Daño del ADN , Diabetes Mellitus Experimental/patología , Masculino , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Ratas , Ratas WistarRESUMEN
Upregulation of haptoglobin (Hp) expression in the rat during the acute phase (AP) response is the result of synergistic effects of IL-6-, IL-1beta-, and corticosterone-activated signaling pathways. IL-6 signaling terminates in cis-trans interactions of the Hp gene hormone-responsive element (HRE) with transcription factors STAT3 and C/EBPbeta. The aim of this study was to examine the unresolved molecular mechanism of glucocorticoid action. A 3-fold rise in serum corticosterone at 2 and 4 h of the AP response induced by turpentine administration preceded a 2.3-fold increase in the rate of Hp gene transcription at 12 h that was accompanied by a 4.8-fold increase in glucocorticoid receptor (GR), the appearance of an 86-kDa STAT3 isoform and 3.9-, 1.9-, and 1.7-fold increased amounts of 91-kDa STAT3, 35- and 42-kDa C/EBPbeta isoforms in the nucleus. These events resulted in 4.6- and 2.5-fold increased Hp levels in the liver and serum at 24 h. HRE affinity chromatography and immunoblot analysis revealed that maximal occupancy of the HRE with GR, STAT3, and C/EBPbeta at 12 h correlated with increased transcriptional activity of the Hp gene. Coimmunoprecipitation experiments showed that activated GR established de novo interaction with STAT3 isoforms while GR-C/EBPbeta interactions observed during basal transcription increased during the AP response. Computer analysis of the HRE disclosed two potential GR-binding sites: one overlapping STAT3, another adjacent to a C/EBPbeta-binding site. This finding and the experimental results suggest that activated GR through direct interactions with STAT3 and C/EBPbeta, participates in Hp gene upregulation as a transcriptional coactivator.
Asunto(s)
Reacción de Fase Aguda/genética , Proteína beta Potenciadora de Unión a CCAAT/genética , Haptoglobinas/genética , Receptores de Glucocorticoides/genética , Elementos de Respuesta/fisiología , Factor de Transcripción STAT3/genética , Animales , Secuencia de Bases , Corticosterona/sangre , Regulación de la Expresión Génica , Hormonas/farmacología , Hígado/metabolismo , Masculino , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Ratas , Ratas Wistar , Trementina , Regulación hacia ArribaRESUMEN
BACKGROUND: Administration of the acute-phase protein alpha2-macroglobulin (MG) prior to total-body irradiation of rats with a 6.7 Gy (LD50) dose of X-rays exerts a radioprotective effect. MATERIAL/METHODS: MG was administered 30 min before irradiation with a 6.7 Gy (LD50) dose of X-rays. Its radioprotective efficacy was compared with that of the synthetic agent amifostine (WR-2721), a sulfhydryl compound which is currently the most effective radioprotector in clinical use. After administration of either MG or amifostine, changes in body and liver weight were recorded and histological liver sections were examined during a four-week follow-up period. RESULTS: As observed in the experimental group administered amifostine, rats that received MG prior to irradiation exhibited 100% survival and restoration of the body and liver weight to the control values. The morphological damage seen in the liver after irradiation of untreated rats was absent in both the MG- and amifostine-pretreated rats. Also, hepatocytes and granulated cells had prominent nuclei and did not exhibit major changes in volume. Dilation of the central vein was not observed. CONCLUSIONS: Administration of MG before irradiation, similar to pretreatment with amifostine, provided complete survival of experimental rats and recovery of liver weight and preserved major histological parameters of the liver.
Asunto(s)
Hígado/efectos de los fármacos , Hígado/patología , Protectores contra Radiación/farmacología , alfa-Macroglobulinas/farmacología , Amifostina/administración & dosificación , Amifostina/farmacología , Animales , Peso Corporal/efectos de los fármacos , Tamaño de los Órganos/efectos de los fármacos , Ratas , Análisis de Supervivencia , alfa-Macroglobulinas/administración & dosificaciónRESUMEN
The organophosphorus compounds soman and paraoxon induce the acute-phase (AP) response. All phases of the AP response, from macrophage activation and stimulation of glucocorticoid secretion to AP protein expression appear to be under the control of similar molecular mechanisms to those during the turpentine-induced AP response. The AP protein content in the circulation 24 h after either soman, paraoxon or turpentine administration was injury-specific. Both soman and paraoxon poisoning were characterized by significantly increased synthesis of alpha(1)-acid glycoprotein (AGP) that displayed an immunomodulatory effect in vitro. This result suggests that after organophosphate poisoning AGP participates in vivo in a negative feedback mechanism that prevents over-activity of the immune system.