Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(19): 13666-13675, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38709144

RESUMEN

High-spin organic tetraradicals with significant intramolecular exchange interactions have high potential for advanced technological applications and fundamental research, but examples reported to date exhibit limited stability and processability. In this work, we designed the first tetraradical based on an oxoverdazyl core and nitronyl nitroxide radicals and successfully synthesized it using a palladium-catalyzed cross-coupling reaction of an oxoverdazyl radical bearing three iodo-phenylene moieties with a gold(I) nitronyl nitroxide-2-ide complex in the presence of a recently developed efficient catalytic system. The molecular and crystal structures of the tetraradical were confirmed by single crystal X-ray diffraction analysis. The tetraradical possesses good thermal stability with decomposition onset at ∼125 °C in an inert atmosphere; in a toluene solution upon prolonged heating at 90 °C in air, no decomposition was observed. The resulting unique verdazyl-nitroxide conjugate was thoroughly studied using a range of experimental and theoretical techniques, such as SQUID magnetometry of polycrystalline powders, EPR spectroscopy in various matrices, cyclic voltammetry, and high-level quantum chemical calculations. All collected data confirm the high thermal stability of the resulting tetraradical and quintet multiplicity of its ground state, which makes the synthesis of this important paramagnet a new milestone in the field of creating high-spin systems.

2.
Dalton Trans ; 53(21): 9151-9160, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38742270

RESUMEN

Valence tautomeric complexes (VT) are promising systems for creating molecular devices. From this viewpoint, valence tautomeric complexes with a hysteresis loop on the magnetic curve are of special interest as potential memory elements. The hysteresis loop is a consequence of retarded structural rearrangements which investigation is an actual problem. Recently, we have described a new VT transition taking place in a bis-dioxolene cobalt complex with imino-pyridine having a TEMPO substituent (A. A. Zolotukhin, et al., Inorg. Chem., 2017, 56, 14751-14754). Valence tautomeric transformation occurs with a hysteresis loop and is accompanied by a phase transition. The phase transition taking place during cooling is accompanied by crystal destruction. This fact makes it impossible to monitor the structural changes responsible for the hysteresis loop. The current research attempts to resolve this problem. A nickel compound of the same composition (TEMPO-imino-pyridine)Ni(3,6-DBSQ)2 was synthesized and characterized. It was established to be isostructural with the cobalt complex. It was used as an inert matrix for the dilution of the VT cobalt complex. The number of solid solutions with Co/Ni ratios of 1 : 1, 1 : 2, 1 : 4, and 1 : 8 was obtained. Variable temperature magnetic susceptibility measurements show that VT transformation with a hysteresis loop takes place in all solid solutions. The hysteresis loop is shifted to low temperatures primarily due to the shifting of its low-temperature boundary with dilution. The hysteresis width does not change significantly with dilution. DSC detected that transformations are accompanied by phase transitions at different temperatures at cooling and heating. The phase transition at the first cooling occurs at slightly lower temperatures compared with subsequent cycles. These temperatures correspond to the transition temperatures detected from the magnetic curves. The phase transition during the first cooling is accompanied by crystal destruction. Physical destruction takes place in the crystals of all solid solutions. X-ray diffraction powder patterns confirm that phase transition is accompanied by considerable reorganization of the crystal structure typical for the first order transitions. The unit cell volume of solid solutions is larger than that of pure complexes. Especially calculated crystal invariom indicated that the "lattice energy" in a solid solution is the lowest compared with that in "pure" nickel and cobalt complexes.

3.
Chempluschem ; 89(6): e202300736, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38332534

RESUMEN

The title radical R⋅, synthesized by reduction of the corresponding cation R+, is thermally stable up to ~380 K in the crystalline state under anaerobic conditions. With SQUID magnetometry, single-crystal and powder XRD, solid-state EPR and TG-DSC, reversible spin-Peierls transition between diamagnetic and paramagnetic states featuring ~10 K hysteretic loop is observed for R⋅ in the temperature range ~310-325 K; ΔH=~2.03 kJ mol-1 and ΔS=~6.23 J mol-1 K-1. The transition is accompanied by mechanical movement of the crystals, i. e., by thermosalient behavior. The low-temperature diamagnetic P-1 polymorph of R⋅ consists of R⋅2 π-dimers arranged in (…R⋅2…)n π-stacks; whereas the high-temperature paramagnetic P21/c polymorph, of uniform (…R⋅…)n π-stacks. With the XRD geometries, CASSCF and broken-symmetry DFT jointly suggest strong antiferromagnetic (AF) interactions within R⋅2 and weak between R⋅2 for the (…R⋅2…)n stacks; and moderate AF interactions between R⋅ for the (…R⋅…)n stacks. The fully hydrocarbon archetype of R⋅ does not reveal the aforementioned properties. Thus, the fluorinated 1,3,2-benzodithiazolyls pave a new pathway in the design and synthesis of metal-less magnetically-bistable materials.

4.
Chemistry ; 30(8): e202303456, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37988241

RESUMEN

High-spin organic tetraradicals with significant intramolecular exchange interactions have high potential for advanced technological applications and fundamental research, but those synthesized to date possess limited stability and processability. In this work, we have designed a tetraradical based on the Blatter's radical and nitronyl nitroxide radical moieties and successfully synthesized it by using the palladium-catalyzed cross-coupling reaction of a triiodo-derivative of the 1,2,4-benzotriazinyl radical with gold(I) nitronyl nitroxide-2-ide complex in the presence of a newly developed efficient catalytic system. The molecular and crystal structure of the tetraradical was confirmed by X-ray diffraction analysis. The tetraradical possesses good thermal stability with decomposition onset at ∼150 °C under an inert atmosphere and exhibits reversible redox waves at -0.54 and 0.45 V versus Ag/AgCl. The magnetic properties of the tetraradical were characterized by SQUID magnetometry of polycrystalline powders and EPR spectroscopy in various matrices. The collected data, analyzed by using high-level quantum chemical calculations, confirmed that the tetraradical has a triplet ground state and a nearby excited quintet state. The unique high stability of the prepared triazinyl-nitronylnitroxide tetraradical is a new milestone in the field of creating high-spin systems.

5.
Nitric Oxide ; 143: 9-15, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38096947

RESUMEN

This study explores the antiarrhythmic and hypotensive potential of pyridyl-substituted nitronyl nitroxides derivatives, uncovering the crucial role of a single carbon moiety of the pyridine cycle alongside radical and charged oxygen centers of the imidazoline fragment. Notably, the introduction of fluorine atoms diminished the antiarrhythmic effect, while the most potent derivatives featured the nitronyl nitroxide pattern positioned at the third site of the pyridine cycle. Gender-dependent responses were observed in lead compounds LCF3 and LMe, with LMe inducing temporary bradycardia and hypotension specifically in female rats, and LCF3 causing significant blood pressure reduction followed by rebound in females compared to milder effects in males. Mechanistic insights point towards ß1 adrenoceptor blockade as an underlying mechanism, supported by experiments on isolated rat atria. This research underscores the interplay between structure, cardiovascular effects and gender-specific responses, offering insights for therapeutic strategies for treating free radical-associated cardiovascular disorders.


Asunto(s)
Antihipertensivos , Óxidos de Nitrógeno , Masculino , Ratas , Femenino , Animales , Óxidos de Nitrógeno/química , Radicales Libres , Piridinas
6.
Chemistry ; 30(13): e202303499, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38116871

RESUMEN

A novel synthetic approach has been employed to synthesize a series of new nitronyl nitroxides: 2-(1-propyl-1H-imidazol-5-yl)- (Ln-Pr ), 2-(1-isopropyl-1H-imidazol-5-yl)- (Li-Pr ) and 2-(1-butyl-1H-imidazol-5-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (Ln-Bu ). The reaction of Cu(hfac)2 with LR in a 1 : 2 ratio yields mononuclear heterospin complexes [Cu(hfac)2 (LR )2 ] (LR =Ln-Pr , Li-Pr , Ln-Bu ), which have a similar crystal structure to the "jumping" crystals [Cu(hfac)2 (LMe )2 ] that exhibit chemomechanical activity. It was shown that an increase in the alkyl substituent R leads to changes in the crystal packing of the molecules and the absence of chemomechanical activity. Furthermore, it was found that two polymorph modifications of the heterospin complex [Cu(hfac)2 (Ln-Pr )2 ] can be obtained, and magnetic properties of [Cu(hfac)2 (Ln-Pr )2 ] strongly depend on the angle between the planes of the paramagnetic fragment O•-N-C=N→O and the imidazole ring in Ln-Pr .

7.
Dalton Trans ; 52(41): 15107-15114, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37814785

RESUMEN

Ditopic di-o-quinone with a resorcinol bridge exhibits the ability to self-assemble in a reaction with copper, giving a cage-like binuclear complex that, due to the cofacially placed metal ions, is capable of encapsulation of different solvent molecules as guest ligands. Notably, the geometry of the internal cavity of this complex adjusts depending on the coordinating properties of the encapsulated molecule (mono- or bidentate). A feature of this species is that the cage-forming units are copper(II) bis-semiquinonate moieties, capable of undergoing ligand-centered redox transformations. Electrochemical and EPR spectroscopy studies showed that there is a channel for intramolecular electronic exchange interactions between the redox centres of the molecule.

8.
Int J Mol Sci ; 24(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37298728

RESUMEN

Functionalized perfluoroalkyl lithium ß-diketonates (LiL) react with lanthanide(III) salts (Ln = Eu, Gd, Tb, Dy) in methanol to give heterobimetallic Ln-Li complexes of general formula [(LnL3)(LiL)(MeOH)]. The length of fluoroalkyl substituent in ligand was found to affect the crystal packing of complexes. Photoluminescent and magnetic properties of heterobimetallic ß-diketonates in the solid state are reported. The effect of the geometry of the [LnO8] coordination environment of heterometallic ß-diketonates on the luminescent properties (quantum yields, phosphorescence lifetimes for Eu, Tb, Dy complexes) and single-ion magnet behavior (Ueff for Dy complexes) is revealed.


Asunto(s)
Fluorocarburos , Elementos de la Serie de los Lantanoides , Elementos de la Serie de los Lantanoides/química , Litio , Imanes , Luminiscencia
9.
Dalton Trans ; 52(27): 9337-9345, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37350573

RESUMEN

Copper(II)-nitroxide based Cu(hfac)2LR compounds exhibit unusual magnetic behavior that can be induced by various stimuli. In many aspects, the magnetic phenomena observed in Cu(hfac)2LR are similar to classical spin-crossover behavior. However, these phenomena originate from polynuclear exchange-coupled spin clusters Cu2+-O˙-N< or >N-˙O-Cu2+-O˙-N<. Such peculiarities may result in additional multifunctionality of Cu(hfac)2LR compounds, making them promising materials for spintronic applications. Herein, we investigate the Cu(hfac)2LMeMe material, which demonstrates a three-step temperature-induced magnetostructural transition between high-temperature, low-temperature, and intermediate states, as revealed by magnetometry. Two main steps were resolved using variable-temperature Fourier-transform infrared and Q-band electron paramagnetic resonance (EPR) spectroscopies. The intermediate-temperature states (∼40-90 K) are characterized by the coexistence of two types of copper(II)-nitroxide clusters, corresponding to the low-temperature and high-temperature phases. High-field EPR experiments revealed the effect of partial alignment of Cu(hfac)2LMeMe microcrystals in a strong (>20 T) magnetic field. This effect was used to unveil the structural features of the low-temperature phase of Cu(hfac)2LMeMe, which were inaccessible using single-crystal X-ray diffraction (XRD) technique. In particular, high-field EPR allowed us to determine the relative direction of the Jahn-Teller axes in CuO6 and CuO4N2 units.

10.
Dalton Trans ; 52(23): 7876-7884, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37212425

RESUMEN

A new bifunctional N4-ligand was obtained via the condensation reaction of acenaphthenequinone and 2-picolylamine. A peculiarity of this synthesis is the formation of a new intramolecular C-C bond during the reaction. The structure and redox properties of the ligand were studied. The anion-radical form of the ligand was prepared via the chemical reduction of the latter with metallic sodium as well as in situ via its electrochemical reduction in a solution. The sodium salt prepared was structurally characterized using single-crystal X-ray diffraction (XRD). New cobalt complexes with the ligand in neutral and anion-radical forms were synthesized and further studied. As a result, three new homo- and heteroleptic cobalt(II) complexes were obtained, in which the cobalt atom demonstrates different modes of coordination with the ligand. Cobalt(II) complex CoL2 with two monoanionic ligands was prepared by the electrochemical reduction of a related L2CoBr2 complex or by treating cobalt(II) bromide with the sodium salt. XRD was used to study the structures of all cobalt complexes prepared. Magnetic and electron paramagnetic resonance studies were performed: CoII ion states with S = 3/2 and S = 1/2 were found for the complexes. A quantum-chemical study confirmed that the spin density is mainly located at the cobalt center.

11.
Dalton Trans ; 52(2): 347-359, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36511081

RESUMEN

Fast crystallization of the monoclathrochelate cobalt(II) intracomplex [Co(Cl2Gm)3(BAd)2] (where Cl2Gm2- is a dichloroglyoxime dianion and BAd is an adamantylboron capping group, 1), initially obtained by the direct template condensation of the corresponding chelating α-dioximate and cross-linking ligand synthons on the Co2+ ion as a matrix, from benzene or dichloromethane afforded its structural triclinic and hexagonal polymorphs. Its prolonged recrystallization from dichloromethane under air atmosphere and sunlight irradiation unexpectedly gave the crystals of the CoIIICoIICoIII-trinuclear dodecachloro-bis-clathrochelate intracomplex [[CoIII(Cl2Gm)3(BAd)]2CoII] (2), the molecule of which consists of two macrobicyclic frameworks with encapsulated low-spin (LS) Co3+ ions, which are cross-linked by a µ3-bridging Co2+ ion as a bifunctional Lewis-acidic center. The most plausible pathway of such a 1 → 2 transformation is based on the photoinitiated radical oxidation of dichloromethane with air oxygen giving the reactive species. Cobalt(II) monoclathrochelate 1 was found to undergo a temperature-induced spin crossover (SCO) both in its solutions and in the solid state. In spite of the conformational rigidity of the corresponding quasiaromatic diboron-capped tris-α-dioximate framework, the main parameters of this SCO transition (i.e., its completeness and gradual character) are strongly affected by the nature of the used solvent (in the case of its solutions) and by the structural polymorphism of its crystals (in the solid state). In the latter case, the LS state (S = 1/2) of this complex is more thermally stable and, therefore, the cobalt(II)-centered 1/2 → 3/2 SCO is more gradual than that in solutions.

12.
Molecules ; 27(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36500270

RESUMEN

A series of new charge transfer (CT) chromophores of "α-diimine-MII-catecholate" type (where M is 3d-row transition metals-Cu, Ni, Co) were derived from 4,4'-di-tert-butyl-2,2'-bipyridyl and 3,6-di-tert-butyl-o-benzoquinone (3,6-DTBQ) in accordance with three modified synthetic approaches, which provide high yields of products. A square-planar molecular structure is inherent for monomeric [CuII(3,6-Cat)(bipytBu)]∙THF (1) and NiII(3,6-Cat)(bipytBu) (2) chromophores, while dimeric complex [CoII(3,6-Cat)(bipytBu)]2∙toluene (3) units two substantially distorted heteroleptic D-MII-A (where D, M, A are donor, metal and acceptor, respectively) parts through a donation of oxygen atoms from catecholate dianions. Chromophores 1-3 undergo an effective photoinduced intramolecular charge transfer (λ = 500-715 nm, extinction coefficient up to 104 M-1·cm-1) with a concomitant generation of a less polar excited species, the energy of which is a finely sensitive towards solvent polarity, ensuring a pronounced negative solvatochromic effect. Special attention was paid to energetic characteristics for CT and interacting HOMO/LUMO orbitals that were explored by a synergy of UV-vis-NIR spectroscopy, cyclic voltammetry, and DFT study. The current work sheds light on the dependence of CT peculiarities on the nature of metal centers from various groups of the periodic law. Moreover, the "α-diimine-MII-catecholate" CT chromophores on the base of "late" transition elements with differences in d-level's electronic structure were compared for the first time.


Asunto(s)
Complejos de Coordinación , Elementos de Transición , Complejos de Coordinación/química , Ligandos , Modelos Moleculares , Elementos de Transición/química , Estructura Molecular , Metales/química
13.
ACS Nano ; 16(12): 20831-20841, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36378602

RESUMEN

Magnetic topological insulators (MTIs) have recently become a subject of poignant interest; among them, Z2 topological insulators with magnetic moment ordering caused by embedded magnetic atoms attract special attention. In such systems, the case of magnetic anisotropy perpendicular to the surface that holds a topologically nontrivial surface state is the most intriguing one. Such materials demonstrate the quantum anomalous Hall effect, which manifests itself as chiral edge conduction channels that can be manipulated by switching the polarization of magnetic domains. In the present paper, we uncover the atomic structure of the bulk and the surface of Mn0.06Sb1.22Bi0.78Te3.06 in conjunction with its electronic and magnetic properties; this material is characterized by naturally formed ferromagnetic layers inside the insulating matrix, where the Fermi level is tuned to the bulk band gap. We found that in such mixed crystals septuple layers (SLs) of Mn(Bi,Sb)2Te4 form structures that feature three SLs, each of which is separated by two or three (Bi,Sb)2Te3 quintuple layers (QLs); such a structure possesses ferromagnetic properties. The surface obtained by cleavage includes terraces with different terminations. Manganese atoms preferentially occupy the central positions in the SLs and in a very small proportion can appear in the QLs, as indirectly indicated by a reshaped Dirac cone.

14.
J Am Chem Soc ; 143(21): 8164-8176, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34019759

RESUMEN

Thermally resistant air-stable organic triradicals with a quartet ground state and a large energy gap between spin states are still unique compounds. In this work, we succeeded to design and prepare the first highly stable triradical, consisting of oxoverdazyl and nitronyl nitroxide radical fragments, with a quartet ground state. The triradical and its diradical precursor were synthesized via a palladium-catalyzed cross-coupling reaction of diiodoverdazyl with nitronyl nitroxide-2-ide gold(I) complex. Both paramagnetic compounds were fully characterized by single-crystal X-ray diffraction analysis, superconducting quantum interference device magnetometry, EPR spectroscopy in various matrices, and cyclic voltammetry. In the diradical, the verdazyl and nitronyl nitroxide centers demonstrated full reversibility of redox process, while for the triradical, the electrochemical reduction and oxidation proceed at practically the same redox potentials, but become quasi-reversible. A series of high-level CASSCF/NEVPT2 calculations was performed to predict inter- and intramolecular exchange interactions in crystals of di- and triradicals and to establish their magnetic motifs. Based on the predicted magnetic motifs, the temperature dependences of the magnetic susceptibility were analyzed, and the singlet-triplet (135 ± 10 cm-1) and doublet-quartet (17 ± 2 and 152 ± 19 cm-1) splitting was found to be moderate. Unique high stability of synthesized verdazyl-nitronylnitroxide triradical opens new perspectives for further functionalization and design of high-spin systems with four or more spins.

15.
Molecules ; 26(4)2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33672016

RESUMEN

Reaction of 2,2'-bipyridine (2,2'-bipy) or 1,10-phenantroline (phen) with [Mn(Piv)2(EtOH)]n led to the formation of binuclear complexes [Mn2(Piv)4L2] (L = 2,2'-bipy (1), phen (2); Piv- is the anion of pivalic acid). Oxidation of 1 or 2 by air oxygen resulted in the formation of tetranuclear MnII/III complexes [Mn4O2(Piv)6L2] (L = 2,2'-bipy (3), phen (4)). The hexanuclear complex [Mn6(OH)2(Piv)10(pym)4] (5) was formed in the reaction of [Mn(Piv)2(EtOH)]n with pyrimidine (pym), while oxidation of 5 produced the coordination polymer [Mn6O2(Piv)10(pym)2]n (6). Use of pyrazine (pz) instead of pyrimidine led to the 2D-coordination polymer [Mn4(OH)(Piv)7(µ2-pz)2]n (7). Interaction of [Mn(Piv)2(EtOH)]n with FeCl3 resulted in the formation of the hexanuclear complex [MnII4FeIII2O2(Piv)10(MeCN)2(HPiv)2] (8). The reactions of [MnFe2O(OAc)6(H2O)3] with 4,4'-bipyridine (4,4'-bipy) or trans-1,2-(4-pyridyl)ethylene (bpe) led to the formation of 1D-polymers [MnFe2O(OAc)6L2]n·2nDMF, where L = 4,4'-bipy (9·2DMF), bpe (10·2DMF) and [MnFe2O(OAc)6(bpe)(DMF)]n·3.5nDMF (11·3.5DMF). All complexes were characterized by single-crystal X-ray diffraction. Desolvation of 11·3.5DMF led to a collapse of the porous crystal lattice that was confirmed by PXRD and N2 sorption measurements, while alcohol adsorption led to porous structure restoration. Weak antiferromagnetic exchange was found in the case of binuclear MnII complexes (JMn-Mn = -1.03 cm-1 for 1 and 2). According to magnetic data analysis (JMn-Mn = -(2.69 ÷ 0.42) cm-1) and DFT calculations (JMn-Mn = -(6.9 ÷ 0.9) cm-1) weak antiferromagnetic coupling between MnII ions also occurred in the tetranuclear {Mn4(OH)(Piv)7} unit of the 2D polymer 7. In contrast, strong antiferromagnetic coupling was found in oxo-bridged trinuclear fragment {MnFe2O(OAc)6} in 11·3.5DMF (JFe-Fe = -57.8 cm-1, JFe-Mn = -20.12 cm-1).


Asunto(s)
Acetatos/química , Complejos de Coordinación/química , Compuestos Heterocíclicos/química , Manganeso/química , Valeratos/química , Adsorción , Complejos de Coordinación/síntesis química , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Fenómenos Magnéticos , Conformación Molecular , Temperatura , Termogravimetría , Valeratos/síntesis química , Difracción de Rayos X
16.
Inorg Chem ; 60(5): 3238-3248, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33587624

RESUMEN

The reactions of monomeric [(dpp-Bian)M(thf)4] (M = Ca (1a), Sr (1b); dpp-Bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) with 4,4'-bipyridyl (4,4'-bipy) proceed with electron transfer from dpp-Bian2- to 4,4'-bipy0 to afford calcium and strontium complexes containing simultaneously radical-anionic dpp-Bian- and 4,4'-bipy- ligands. In tetrahydrofuran (thf) the reactions result in 1D coordination polymers [{(dpp-Bian)M(4,4'-bipy)(thf)2}·4thf]n (M = Ca (2a), Sr (2b)), while in a thf/benzene mixture the reaction between 1a and 4,4'-bipy affords the 2D metal-organic framework [{(dpp-Bian)Ca(4,4'-bipy)2}·2thf·2C6H6]n (3). The structures of compounds 2a,b and 3 have been determined by single-crystal X-ray analyses. The presence of the ligand-localized unpaired electrons allows the use of ESR spectroscopy for characterization of the compounds 2a,b and 3. DFT calculations of model calcium complexes with the dpp-Bian, 4,4'-bipy, and thf ligands confirm the energetically favorable open-shell configurations of the molecules bearing the 4,4'-bipy fragments. The magnetic susceptibility measurements confirm the presence of two unpaired electrons per monomeric unit in 2a,b and 3. The thermal stability of compounds 2a,b and 3 was studied by thermogravimetric analysis (TGA). To the best of our knowledge, 3 is the first MOF simultaneously containing two different paramagnetic bridging ligands inside the framework.

17.
Molecules ; 25(22)2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33228185

RESUMEN

New stable polyfluorinated nitroxide radicals for use in cross-coupling reactions, namely, N-tert-butyl-N-oxyamino-2,3,5,6-tetrafluoro-4-iodobenzene and N-tert-butyl-N-oxyamino-2,3,5,6-tetrafluoro-4-ethynylbenzene, were prepared from perfluoroiodobenzene. The reaction of the polyfluoro derivative with tert-butylamine under autoclaving conditions leading to the formation of N-tert-butyl-2,3,5,6-tetrafluoro-4-iodoaniline proved to be the key stage of the whole process. The fluorinated tert-butyl iodophenyl nitroxide was found to form in a solid state via N-O···I halogen bonds, a one-dimensional assembly of the radicals. The acceptor role of the nitroxide group in the halogen bonding changes to a donor role when the nitroxide reacts with Cu(hfac)2. In the last case, zero-dimensional assembly prevails, giving a three-spin complex with axial coordinated nitroxide groups and, as a consequence, causing ferromagnetic intramolecular exchange interactions between Cu(II) and radical spins.


Asunto(s)
Halogenación , Compuestos Orgánicos/química , Espectroscopía de Resonancia por Spin del Electrón , Conformación Molecular , Óxidos de Nitrógeno/química , Difracción de Rayos X
18.
Angew Chem Int Ed Engl ; 59(46): 20704-20710, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-32715591

RESUMEN

Thermally stable organic diradicals with a triplet ground state along with large singlet-triplet energy gap have significant potential for advanced technological applications. A series of phenylene-bridged diradicals with oxoverdazyl and nitronyl nitroxide units were synthesized via a palladium-catalyzed cross-coupling reaction of iodoverdazyls with a nitronyl nitroxide-2-ide gold(I) complex with high yields. The diradicals exhibit high stability and do not decompose in an inert atmosphere up to 180 °C. For the diradicals, both substantial AF (ΔEST ≈-64 cm-1 ) and FM (ΔEST ≥25 and 100 cm-1 ) intramolecular exchange interactions were observed. The sign of the exchange interaction is determined both by the bridging moiety (para- or meta-phenylene) and by the type of oxoverdazyl block (C-linked or N-linked). Upon crystallization, diradicals with the triplet ground state form unique one-dimensional exchange-coupled chains with strong intra- and weak inter-diradical ferromagnetic coupling.

19.
Materials (Basel) ; 13(2)2020 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-31963949

RESUMEN

Five trans-1,4-cyclohexanedicarboxylate (chdc2-) metal-organic frameworks of transition metals were synthesized in aqueous systems. A careful control of pH, reaction temperature and solvent composition were shown to direct the crystallization of a particular compound. Isostructural [Co(H2O)4(chdc)]n (1) and [Fe(H2O)4(chdc)]n (2) consist of one-dimensional hydrogen-bonded chains. Compounds [Cd(H2O)(chdc)]n∙0.5nCH3CN (3), [Mn4(H2O)3(chdc)4]n (4) and [Mn2(Hchdc)2(chdc)]n (5) possess three-dimensional framework structures. The compounds 1, 4 and 5 were further characterized by magnetochemical analysis, which reveals paramagnetic nature of these compounds. A presence of antiferromagnetic exchange at low temperatures is observed for 5 while the antiferromagnetic coupling in 4 is rather strong, even at ambient conditions. The thermal decompositions of 1, 4 and 5 were investigated and the obtained metal oxide (cubic Co3O4 and MnO) samples were analyzed by X-ray diffraction and scanning electron microscopy.

20.
Dalton Trans ; 48(28): 10516-10525, 2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31225849

RESUMEN

A square-planar bis-o-semiquinonato nickel complex interacts with N,N'-disubstituted 1,4-diazabutadienes-1,3 forming six-coordinate compounds. The X-ray structural study indicates complex geometry to be close to the octahedral. Magnetic properties are determined by metal-ligand ferromagnetic exchange interactions which are promoted by complex geometry. In polar solvents (THF, CH2Cl2, and CHCl3) complexes are partly dissociated into corresponding diazabutadiene-nickel catecholate and free o-quinone. In the case of the most sterically hindered 1,4-bis-(2,6-di-iso-propylphenyl)-2,3-dimethyl-1,4-diazabutadiene-1,3 in n-hexane or toluene the above-mentioned reaction is accompanied by the coupling through the back-bonded methyl groups of diazabutadiene. The organic product of the coupling was eliminated from the complex, isolated and structurally characterized. Taking into account the quantitative yield the coupling reaction is the actual procedure for the synthesis of new potential nitrogen ligands.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...