Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(1): e0262277, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34986190

RESUMEN

DNA methylation (DNAme; 5-methylcytosine, 5mC) plays an essential role in mammalian development, and the 5mC profile is regulated by a balance of opposing enzymatic activities: DNA methyltransferases (DNMTs) and Ten-eleven translocation dioxygenases (TETs). In mouse embryonic stem cells (ESCs), de novo DNAme by DNMT3 family enzymes, demethylation by the TET-mediated conversion of 5mC to 5-hydroxymethylation (5hmC), and maintenance of the remaining DNAme by DNMT1 are actively repeated throughout cell cycles, dynamically forming a constant 5mC profile. Nevertheless, the detailed mechanism and physiological significance of this active cyclic DNA modification in mouse ESCs remain unclear. Here by visualizing the localization of DNA modifications on metaphase chromosomes and comparing whole-genome methylation profiles before and after the mid-S phase in ESCs lacking Dnmt1 (1KO ESCs), we demonstrated that in 1KO ESCs, DNMT3-mediated remethylation was interrupted during and after DNA replication. This results in a marked asymmetry in the distribution of 5hmC between sister chromatids at mitosis, with one chromatid being almost no 5hmC. When introduced in 1KO ESCs, the catalytically inactive form of DNMT1 (DNMT1CI) induced an increase in DNAme in pericentric heterochromatin and the DNAme-independent repression of IAPEz, a retrotransposon family, in 1KO ESCs. However, DNMT1CI could not restore the ability of DNMT3 to methylate unmodified dsDNA de novo in S phase in 1KO ESCs. Furthermore, during in vitro differentiation into epiblasts, 1KO ESCs expressing DNMT1CI showed an even stronger tendency to differentiate into the primitive endoderm than 1KO ESCs and were readily reprogrammed into the primitive streak via an epiblast-like cell state, reconfirming the importance of DNMT1 enzymatic activity at the onset of epiblast differentiation. These results indicate a novel function of DNMT1, in which DNMT1 actively regulates the timing and genomic targets of de novo methylation by DNMT3 in an enzymatic activity-dependent and independent manner, respectively.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/genética , Metilación de ADN/genética , ADN Metiltransferasa 3A/genética , Células Madre Embrionarias de Ratones/metabolismo , 5-Metilcitosina/metabolismo , Animales , Diferenciación Celular/genética , Metilasas de Modificación del ADN/genética , Proteínas de Unión al ADN/genética , Impresión Genómica/genética , Heterocromatina/genética , Ratones , Ratones Noqueados , Retroelementos/genética
2.
Nat Commun ; 12(1): 7020, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857746

RESUMEN

Silencing of a subset of germline genes is dependent upon DNA methylation (DNAme) post-implantation. However, these genes are generally hypomethylated in the blastocyst, implicating alternative repressive pathways before implantation. Indeed, in embryonic stem cells (ESCs), an overlapping set of genes, including germline "genome-defence" (GGD) genes, are upregulated following deletion of the H3K9 methyltransferase SETDB1 or subunits of the non-canonical PRC1 complex PRC1.6. Here, we show that in pre-implantation embryos and naïve ESCs (nESCs), hypomethylated promoters of germline genes bound by the PRC1.6 DNA-binding subunits MGA/MAX/E2F6 are enriched for RING1B-dependent H2AK119ub1 and H3K9me3. Accordingly, repression of these genes in nESCs shows a greater dependence on PRC1.6 than DNAme. In contrast, GGD genes are hypermethylated in epiblast-like cells (EpiLCs) and their silencing is dependent upon SETDB1, PRC1.6/RING1B and DNAme, with H3K9me3 and DNAme establishment dependent upon MGA binding. Thus, GGD genes are initially repressed by PRC1.6, with DNAme subsequently engaged in post-implantation embryos.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factor de Transcripción E2F6/genética , Regulación del Desarrollo de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Proteínas del Grupo Polycomb/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Metilación de ADN , Factor de Transcripción E2F6/metabolismo , Implantación del Embrión , Embrión de Mamíferos , Epigénesis Genética , Femenino , Silenciador del Gen , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
Nat Commun ; 11(1): 5417, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33110091

RESUMEN

De novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which are hypomethylated in sperm. While the paternal genome undergoes widespread DNAme loss before the first S-phase following fertilization, recent mass spectrometry analysis revealed that the zygotic paternal genome is paradoxically also subject to a low level of de novo DNAme. However, the loci involved, and impact on transcription were not addressed. Here, we employ allele-specific analysis of whole-genome bisulphite sequencing data and show that a number of genomic regions, including several dozen CGI promoters, are de novo methylated on the paternal genome by the 2-cell stage. A subset of these promoters maintains DNAme through development to the blastocyst stage. Consistent with paternal DNAme acquisition, many of these loci are hypermethylated in androgenetic blastocysts but hypomethylated in parthenogenetic blastocysts. Paternal DNAme acquisition is lost following maternal deletion of Dnmt3a, with a subset of promoters, which are normally transcribed from the paternal allele in blastocysts, being prematurely transcribed at the 4-cell stage in maternal Dnmt3a knockout embryos. These observations uncover a role for maternal DNMT3A activity in post-fertilization epigenetic reprogramming and transcriptional silencing of the paternal genome.


Asunto(s)
Blastocisto/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Genoma , Herencia Materna , Herencia Paterna , Alelos , Animales , Islas de CpG , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , ADN Metiltransferasa 3A , Epigenómica , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones Endogámicos DBA , Oocitos/metabolismo , Espermatozoides/metabolismo
5.
Development ; 147(14)2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32580934

RESUMEN

Melanoblasts disperse throughout the skin and populate hair follicles through long-range cell migration. During migration, cells undergo cycles of coordinated attachment and detachment from the extracellular matrix (ECM). Embryonic migration processes that require cell-ECM attachment are dependent on the integrin family of adhesion receptors. Precise regulation of integrin-mediated adhesion is important for many developmental migration events. However, the mechanisms that regulate integrin-mediated adhesion in vivo in melanoblasts are not well understood. Here, we show that autoinhibitory regulation of the integrin-associated adapter protein talin coordinates cell-ECM adhesion during melanoblast migration in vivo Specifically, an autoinhibition-defective talin mutant strengthens and stabilizes integrin-based adhesions in melanocytes, which impinges on their ability to migrate. Mice with defective talin autoinhibition exhibit delays in melanoblast migration and pigmentation defects. Our results show that coordinated integrin-mediated cell-ECM attachment is essential for melanoblast migration and that talin autoinhibition is an important mechanism for fine-tuning cell-ECM adhesion during cell migration in development.


Asunto(s)
Adhesión Celular , Matriz Extracelular/metabolismo , Actinas/metabolismo , Animales , Movimiento Celular , Forma de la Célula , Células Cultivadas , Embrión de Mamíferos/metabolismo , Integrinas/metabolismo , Masculino , Melanocitos/citología , Melanocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Mutagénesis Sitio-Dirigida , Pigmentación , Talina/genética , Talina/metabolismo
6.
Nat Commun ; 10(1): 5674, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31831741

RESUMEN

Imprinted genes are expressed from a single parental allele, with the other allele often silenced by DNA methylation (DNAme) established in the germline. While species-specific imprinted orthologues have been documented, the molecular mechanisms underlying the evolutionary switch from biallelic to imprinted expression are unknown. During mouse oogenesis, gametic differentially methylated regions (gDMRs) acquire DNAme in a transcription-guided manner. Here we show that oocyte transcription initiating in lineage-specific endogenous retroviruses (ERVs) is likely responsible for DNAme establishment at 4/6 mouse-specific and 17/110 human-specific imprinted gDMRs. The latter are divided into Catarrhini- or Hominoidea-specific gDMRs embedded within transcripts initiating in ERVs specific to these primate lineages. Strikingly, imprinting of the maternally methylated genes Impact and Slc38a4 was lost in the offspring of female mice harboring deletions of the relevant murine-specific ERVs upstream of these genes. Our work reveals an evolutionary mechanism whereby maternally silenced genes arise from biallelically expressed progenitors.


Asunto(s)
Metilación de ADN , Evolución Molecular , Impresión Genómica , Regiones Promotoras Genéticas/genética , Retroviridae/genética , Animales , Epigenómica , Femenino , Células Germinativas , Haplorrinos , Humanos , Macaca , Masculino , Ratones , Oocitos/metabolismo , Pan troglodytes , Primates , Especificidad de la Especie , Secuencias Repetidas Terminales
7.
Nat Genet ; 51(5): 844-856, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31040401

RESUMEN

The oocyte epigenome plays critical roles in mammalian gametogenesis and embryogenesis. Yet, how it is established remains elusive. Here, we report that histone-lysine N-methyltransferase SETD2, an H3K36me3 methyltransferase, is a crucial regulator of the mouse oocyte epigenome. Deficiency in Setd2 leads to extensive alterations of the oocyte epigenome, including the loss of H3K36me3, failure in establishing the correct DNA methylome, invasion of H3K4me3 and H3K27me3 into former H3K36me3 territories and aberrant acquisition of H3K4me3 at imprinting control regions instead of DNA methylation. Importantly, maternal depletion of SETD2 results in oocyte maturation defects and subsequent one-cell arrest after fertilization. The preimplantation arrest is mainly due to a maternal cytosolic defect, since it can be largely rescued by normal oocyte cytosol. However, chromatin defects, including aberrant imprinting, persist in these embryos, leading to embryonic lethality after implantation. Thus, these data identify SETD2 as a crucial player in establishing the maternal epigenome that in turn controls embryonic development.


Asunto(s)
Desarrollo Embrionario/genética , Epigénesis Genética , Impresión Genómica , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Animales , ADN (Citosina-5-)-Metiltransferasas/deficiencia , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Femenino , Código de Histonas/genética , N-Metiltransferasa de Histona-Lisina/deficiencia , Histonas/metabolismo , Masculino , Ratones , Ratones Noqueados , Modelos Genéticos , Oocitos/metabolismo , Oogénesis/genética , Embarazo
8.
Cell Rep ; 25(9): 2401-2416.e5, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30485809

RESUMEN

Cells in multicellular organisms are arranged in complex three-dimensional patterns. This requires both transient and stable adhesions with the extracellular matrix (ECM). Integrin adhesion receptors bind ECM ligands outside the cell and then, by binding the protein talin inside the cell, assemble an adhesion complex connecting to the cytoskeleton. The activity of talin is controlled by several mechanisms, but these have not been well studied in vivo. By generating mice containing the activating point mutation E1770A in talin (Tln1), which disrupts autoinhibition, we show that talin autoinhibition controls cell-ECM adhesion, cell migration, and wound healing in vivo. In particular, blocking autoinhibition gives rise to more mature, stable focal adhesions that exhibit increased integrin activation. Mutant cells also show stronger attachment to ECM and decreased traction force. Overall, these results demonstrate that modulating talin function via autoinhibition is an important mechanism for regulating multiple aspects of integrin-mediated cell-ECM adhesion in vivo.


Asunto(s)
Matriz Extracelular/metabolismo , Talina/metabolismo , Cicatrización de Heridas , Actinas/metabolismo , Animales , Fenómenos Biomecánicos , Adhesión Celular , Movimiento Celular , Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Adhesiones Focales/metabolismo , Integrinas/metabolismo , Ratones , Mutación/genética , Fenotipo , Transducción de Señal , Talina/genética
9.
PLoS Genet ; 14(8): e1007587, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30096149

RESUMEN

The basic helix-loop-helix (bHLH) transcription factor ASCL2 plays essential roles in diploid multipotent trophoblast progenitors, intestinal stem cells, follicular T-helper cells, as well as during epidermal development and myogenesis. During early development, Ascl2 expression is regulated by genomic imprinting and only the maternally inherited allele is transcriptionally active in trophoblast. The paternal allele-specific silencing of Ascl2 requires expression of the long non-coding RNA Kcnq1ot1 in cis and the deposition of repressive histone marks. Here we show that Del7AI, a 280-kb deletion allele neighboring Ascl2, interferes with this process in cis and leads to a partial loss of silencing at Ascl2. Genetic rescue experiments show that the low level of Ascl2 expression from the paternal Del7AI allele can rescue the embryonic lethality associated with maternally inherited Ascl2 mutations, in a level-dependent manner. Despite their ability to support development to term, the rescued placentae have a pronounced phenotype characterized by severe hypoplasia of the junctional zone, expansion of the parietal trophoblast giant cell layer, and complete absence of invasive glycogen trophoblast cells. Transcriptome analysis of ectoplacental cones at E7.5 and differentiation assays of Ascl2 mutant trophoblast stem cells show that ASCL2 is required for the emergence or early maintenance of glycogen trophoblast cells during development. Our work identifies a new cis-acting mutation interfering with Kcnq1ot1 silencing function and establishes a novel critical developmental role for the transcription factor ASCL2.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Linaje de la Célula , Glucógeno/metabolismo , Trofoblastos/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Femenino , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Impresión Genómica , Técnicas de Genotipaje , Heterocigoto , Masculino , Ratones , Placenta/citología , Embarazo , Análisis de Secuencia de ARN , Células Madre/citología , Trofoblastos/citología
10.
Nat Commun ; 9(1): 3331, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30127397

RESUMEN

De novo DNA methylation (DNAme) during mouse oogenesis occurs within transcribed regions enriched for H3K36me3. As many oocyte transcripts originate in long terminal repeats (LTRs), which are heterogeneous even between closely related mammals, we examined whether species-specific LTR-initiated transcription units (LITs) shape the oocyte methylome. Here we identify thousands of syntenic regions in mouse, rat, and human that show divergent DNAme associated with private LITs, many of which initiate in lineage-specific LTR retrotransposons. Furthermore, CpG island (CGI) promoters methylated in mouse and/or rat, but not human oocytes, are embedded within rodent-specific LITs and vice versa. Notably, at a subset of such CGI promoters, DNAme persists on the maternal genome in fertilized and parthenogenetic mouse blastocysts or in human placenta, indicative of species-specific epigenetic inheritance. Polymorphic LITs are also responsible for disparate DNAme at promoter CGIs in distantly related mouse strains, revealing that LITs also promote intra-species divergence in CGI DNAme.


Asunto(s)
Metilación de ADN/genética , Patrón de Herencia/genética , Oocitos/metabolismo , Retroelementos/genética , Secuencias Repetidas Terminales/genética , Transcripción Genética , Animales , Islas de CpG/genética , ADN Intergénico/genética , Fertilización/genética , Regulación de la Expresión Génica , Humanos , Mamíferos/metabolismo , Ratones Endogámicos C57BL , Polimorfismo Genético , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Especificidad de la Especie , Sintenía/genética
11.
BMC Genomics ; 19(1): 463, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29907088

RESUMEN

BACKGROUND: Allele-specific transcriptional regulation, including of imprinted genes, is essential for normal mammalian development. While the regulatory regions controlling imprinted genes are associated with DNA methylation (DNAme) and specific histone modifications, the interplay between transcription and these epigenetic marks at allelic resolution is typically not investigated genome-wide due to a lack of bioinformatic packages that can process and integrate multiple epigenomic datasets with allelic resolution. In addition, existing ad-hoc software only consider SNVs for allele-specific read discovery. This limitation omits potentially informative INDELs, which constitute about one fifth of the number of SNVs in mice, and introduces a systematic reference bias in allele-specific analyses. RESULTS: Here, we describe MEA, an INDEL-aware Methylomic and Epigenomic Allele-specific analysis pipeline which enables user-friendly data exploration, visualization and interpretation of allelic imbalance. Applying MEA to mouse embryonic datasets yields robust allele-specific DNAme maps and low reference bias. We validate allele-specific DNAme at known differentially methylated regions and show that automated integration of such methylation data with RNA- and ChIP-seq datasets yields an intuitive, multidimensional view of allelic gene regulation. MEA uncovers numerous novel dynamically methylated loci, highlighting the sensitivity of our pipeline. Furthermore, processing and visualization of epigenomic datasets from human brain reveals the expected allele-specific enrichment of H3K27ac and DNAme at imprinted as well as novel monoallelically expressed genes, highlighting MEA's utility for integrating human datasets of distinct provenance for genome-wide analysis of allelic phenomena. CONCLUSIONS: Our novel pipeline for standardized allele-specific processing and visualization of disparate epigenomic and methylomic datasets enables rapid analysis and navigation with allelic resolution. MEA is freely available as a Docker container at https://github.com/julienrichardalbert/MEA .


Asunto(s)
Alelos , Metilación de ADN , Epigénesis Genética , Epigenómica/métodos , Programas Informáticos , Animales , Inmunoprecipitación de Cromatina , Islas de CpG , Perfilación de la Expresión Génica , Células Germinativas/metabolismo , Humanos , Mutación INDEL , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Sitio de Iniciación de la Transcripción
12.
Dev Cell ; 36(2): 152-63, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26812015

RESUMEN

Critical roles for DNA methylation in embryonic development are well established, but less is known about its roles during trophoblast development, the extraembryonic lineage that gives rise to the placenta. We dissected the role of DNA methylation in trophoblast development by performing mRNA and DNA methylation profiling of Dnmt3a/3b mutants. We find that oocyte-derived methylation plays a major role in regulating trophoblast development but that imprinting of the key placental regulator Ascl2 is only partially responsible for these effects. We have identified several methylation-regulated genes associated with trophoblast differentiation that are involved in cell adhesion and migration, potentially affecting trophoblast invasion. Specifically, trophoblast-specific DNA methylation is linked to the silencing of Scml2, a Polycomb Repressive Complex 1 protein that drives loss of cell adhesion in methylation-deficient trophoblast. Our results reveal that maternal DNA methylation controls multiple differentiation-related and physiological processes in trophoblast via both imprinting-dependent and -independent mechanisms.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , Metilación de ADN , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/genética , Placenta/embriología , Trofoblastos/citología , Animales , Epigénesis Genética/genética , Femenino , Impresión Genómica/genética , Ratones Transgénicos , Placenta/metabolismo , Embarazo
13.
Genome Biol ; 16: 208, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26429547

RESUMEN

BACKGROUND: X-chromosome inactivation is a striking example of epigenetic silencing in which expression of the long non-coding RNA XIST initiates the heterochromatinization and silencing of one of the pair of X chromosomes in mammalian females. To understand how the RNA can establish silencing across millions of basepairs of DNA we have modelled the process by inducing expression of XIST from nine different locations in human HT1080 cells. RESULTS: Localization of XIST, depletion of Cot-1 RNA, perinuclear localization, and ubiquitination of H2A occurs at all sites examined, while recruitment of H3K9me3 was not observed. Recruitment of the heterochromatic features SMCHD1, macroH2A, H3K27me3, and H4K20me1 occurs independently of each other in an integration site-dependent manner. Silencing of flanking reporter genes occurs at all sites, but the spread of silencing to flanking endogenous human genes is variable in extent of silencing as well as extent of spread, with silencing able to skip regions. The spread of H3K27me3 and loss of H3K27ac correlates with the pre-existing levels of the modifications, and overall the extent of silencing correlates with the ability to recruit additional heterochromatic features. CONCLUSIONS: The non-coding RNA XIST functions as a cis-acting silencer when expressed from nine different locations throughout the genome. A hierarchy among the features of heterochromatin reveals the importance of interaction with the local chromatin neighborhood for optimal spread of silencing, as well as the independent yet cooperative nature of the establishment of heterochromatin by the non-coding XIST RNA.


Asunto(s)
Epigénesis Genética , Silenciador del Gen , ARN Largo no Codificante/genética , Inactivación del Cromosoma X/genética , Cromosomas Humanos X/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Genoma Humano , Heterocromatina/genética , Humanos
14.
Genes Dev ; 28(18): 2041-55, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25228647

RESUMEN

Transcription of endogenous retroviruses (ERVs) is inhibited by de novo DNA methylation during gametogenesis, a process initiated after birth in oocytes and at approximately embryonic day 15.5 (E15.5) in prospermatogonia. Earlier in germline development, the genome, including most retrotransposons, is progressively demethylated. Young ERVK and ERV1 elements, however, retain intermediate methylation levels. As DNA methylation reaches a low point in E13.5 primordial germ cells (PGCs) of both sexes, we determined whether retrotransposons are marked by H3K9me3 and H3K27me3 using a recently developed low-input ChIP-seq (chromatin immunoprecipitation [ChIP] combined with deep sequencing) method. Although these repressive histone modifications are found predominantly on distinct genomic regions in E13.5 PGCs, they concurrently mark partially methylated long terminal repeats (LTRs) and LINE1 elements. Germline-specific conditional knockout of the H3K9 methyltransferase SETDB1 yields a decrease of both marks and DNA methylation at H3K9me3-enriched retrotransposon families. Strikingly, Setdb1 knockout E13.5 PGCs show concomitant derepression of many marked ERVs, including intracisternal A particle (IAP), ETn, and ERVK10C elements, and ERV-proximal genes, a subset in a sex-dependent manner. Furthermore, Setdb1 deficiency is associated with a reduced number of male E13.5 PGCs and postnatal hypogonadism in both sexes. Taken together, these observations reveal that SETDB1 is an essential guardian against proviral expression prior to the onset of de novo DNA methylation in the germline.


Asunto(s)
Metilación de ADN , Retrovirus Endógenos/metabolismo , Células Germinativas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Animales , Inmunoprecipitación de Cromatina , Retrovirus Endógenos/genética , Femenino , Gametogénesis/genética , Eliminación de Gen , Técnicas de Inactivación de Genes , Silenciador del Gen , Células Germinativas/virología , N-Metiltransferasa de Histona-Lisina/genética , Masculino , Ratones , Transcripción Genética , Activación Viral/genética
15.
Nucleic Acids Res ; 40(4): 1523-35, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22053079

RESUMEN

The gene Mest (also known as Peg1) is regulated by genomic imprinting in the mouse and only the paternal allele is active for transcription. MEST is similarly imprinted in humans, where it is a candidate for the growth retardation Silver-Russell syndrome. The MEST protein belongs to an ancient family of hydrolases but its function is still unknown. It is highly conserved in vertebrates although imprinted expression is only observed in marsupials and eutherians, thus a recent evolutionary event. Here we describe the identification of new imprinted RNA products at the Mest locus, longer variants of the RNA, called MestXL, transcribed >10 kb into the downstream antisense gene Copg2. During development MestXL is produced exclusively in the developing central nervous system (CNS) by alternative polyadenylation. Copg2 is biallelically expressed in the embryo except in MestXL-expressing tissues, where we observed preferential expression from the maternal allele. To analyze the function of the MestXL transcripts in Copg2 regulation, we studied the effects of a targeted allele at Mest introducing a truncation in the mRNA. We show that both the formation of the MestXL isoforms and the allelic bias at Copg2 are lost in the CNS of mutants embryos. Our results propose a new mechanism to regulate allelic usage in the mammalian genome, via tissue-specific alternative polyadenylation and transcriptional interference in sense-antisense pairs at imprinted loci.


Asunto(s)
Alelos , Impresión Genómica , Poliadenilación , Proteínas/genética , ARN/genética , Animales , Proteína Coatómero , Ratones , Mutación , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas/metabolismo , ARN/metabolismo , ARN Mensajero/metabolismo , Proteínas de Transporte Vesicular
16.
Mol Cell Biol ; 31(14): 2827-37, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21576366

RESUMEN

The distal region of mouse chromosome 7 contains two imprinted domains separated by a relatively gene-poor interval. We have previously described a transgenic mouse line called Tel7KI, which contains a green fluorescent protein (GFP) reporter inserted 2.6 kb upstream of the Ins2 gene at the proximal end of this interval. The GFP reporter from Tel7KI is imprinted and maternally expressed in postimplantation embryos. Here, we present evidence that the distal imprinting center, KvDMR1 (IC2), is responsible for the paternal silencing of Tel7KI. First, we show that Tel7KI is silenced when the noncoding RNA Kcnq1ot1 is biallelically expressed due to absence of maternal DNA methylation at IC2. Second, we use an embryonic stem (ES) cell differentiation assay to examine the effect of an IC2 deletion in cis to Tel7KI and show that it impairs the ability of the paternal transmission Tel7KI ES cells to silence GFP. These results suggested that Kcnq1ot1 silencing extends nearly 300 kb further than previously reported and led us to examine other transcripts between IC1 and IC2. We found that splice variants of Th and Ins2 are imprinted, maternally expressed, and regulated by IC2, showing that the silencing domain uncovered by our transgenic line also affects endogenous transcripts.


Asunto(s)
Silenciador del Gen , Genes Reporteros , Impresión Genómica , Proteínas Fluorescentes Verdes/metabolismo , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , ARN no Traducido/genética , Empalme Alternativo , Animales , Diferenciación Celular/genética , Metilación de ADN , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Epigénesis Genética , Femenino , Proteínas Fluorescentes Verdes/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Placenta/metabolismo , Embarazo , ARN no Traducido/metabolismo , Ratas
17.
Dev Biol ; 351(2): 277-86, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21238448

RESUMEN

Several imprinted genes have been implicated in the regulation of placental function and embryonic growth. On distal mouse chromosome 7, two clusters of imprinted genes, each regulated by its own imprinting center (IC), are separated by a poorly characterized region of 280kb (the IC1-IC2 interval). We previously generated a mouse line in which this IC1-IC2 interval has been deleted (Del(7AI) allele) and found that maternal inheritance of this allele results in low birth weights in newborns. Here we report that Del(7AI) causes a partial loss of Ascl2, a maternally expressed gene in the IC2 cluster, which when knocked out leads to embryonic lethality at midgestation due to a lack of spongiotrophoblast formation. The hypomorphic Ascl2 allele causes embryonic growth restriction and an associated placental phenotype characterized by a reduction in placental weight, reduced spongiotrophoblast population, absence of glycogen cells, and an expanded trophoblast giant cell layer. We also uncovered severe defects in the labyrinth layer of maternal mutants including increased production of the trilaminar labyrinth trophoblast cell types and a disorganized labyrinthine vasculature. Our results have important implications for our understanding of the role played by the spongiotrophoblast layer during placentation and show that regulation of the dosage of the imprinted gene Ascl2 can affect all three layers of the chorio-allantoic placenta.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Retardo del Crecimiento Fetal/etiología , Placenta/anomalías , Animales , Recuento de Células , Deleción Cromosómica , Oído Interno/anomalías , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Tamaño de los Órganos , Embarazo , Trofoblastos/patología
18.
BMC Dev Biol ; 10: 50, 2010 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-20459838

RESUMEN

BACKGROUND: Several imprinted genes have been implicated in the process of placentation. The distal region of mouse chromosome 7 (Chr 7) contains at least ten imprinted genes, several of which are expressed from the maternal homologue in the placenta. The corresponding paternal alleles of these genes are silenced in cis by an incompletely understood mechanism involving the formation of a repressive nuclear compartment mediated by the long non-coding RNA Kcnq1ot1 initiated from imprinting centre 2 (IC2). However, it is unknown whether some maternally expressed genes are silenced on the paternal homologue via a Kcnq1ot1-independent mechanism. We have previously reported that maternal inheritance of a large truncation of Chr7 encompassing the entire IC2-regulated domain (DelTel7 allele) leads to embryonic lethality at mid-gestation accompanied by severe placental abnormalities. Kcnq1ot1 expression can be abolished on the paternal chromosome by deleting IC2 (IC2KO allele). When the IC2KO mutation is paternally inherited, epigenetic silencing is lost in the region and the DelTel7 lethality is rescued in compound heterozygotes, leading to viable DelTel7/IC2KO mice. RESULTS: Considering the important functions of several IC2-regulated genes in placentation, we set out to determine whether these DelTel7/IC2KO rescued conceptuses develop normal placentae. We report no abnormalities with respect to the architecture and vasculature of the DelTel7/IC2KO rescued placentae. Imprinted expression of several of the IC2-regulated genes critical to placentation is also faithfully recapitulated in DelTel7/IC2KO placentae. CONCLUSION: Taken together, our results demonstrate that all the distal chromosome 7 imprinted genes implicated in placental function are silenced by IC2 and Kcnq1ot1 on the paternal allele. Furthermore, our results demonstrate that the methylated maternal IC2 is not required for the regulation of nearby genes. The results show the potential for fully rescuing LQ trans placental abnormalities that are caused by imprinting defects.


Asunto(s)
Síndrome de Beckwith-Wiedemann/genética , Impresión Genómica , Placenta/anomalías , Placenta/metabolismo , Animales , Síndrome de Beckwith-Wiedemann/prevención & control , Cromosomas de los Mamíferos , Femenino , Humanos , Canal de Potasio KCNQ1/genética , Masculino , Ratones , Ratones Noqueados , Embarazo , ARN no Traducido/metabolismo
19.
Hum Mol Genet ; 18(22): 4255-67, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19684026

RESUMEN

Imprinted genes are commonly clustered in domains across the mammalian genome, suggesting a degree of coregulation via long-range coordination of their monoallelic transcription. The distal end of mouse chromosome 7 (Chr 7) contains two clusters of imprinted genes within a approximately 1 Mb domain. This region is conserved on human 11p15.5 where it is implicated in the Beckwith-Wiedemann syndrome. In both species, imprinted regulation requires two critical cis-acting imprinting centres, carrying different germline epigenetic marks and mediating imprinted expression in the proximal and distal sub-domains. The clusters are separated by a region containing the gene for tyrosine hydroxylase (Th) as well as a high density of short repeats and retrotransposons in the mouse. We have used the Cre-loxP recombination system in vivo to engineer an interstitial deletion of this approximately 280-kb intervening region previously proposed to participate in the imprinting mechanism or to act as a boundary between the two sub-domains. The deletion allele, Del(7AI), is silent with respect to epigenetic marking at the two flanking imprinting centres. Reciprocal inheritance of Del(7AI) demonstrates that the deleted region, which represents more than a quarter of the previously defined imprinted domain, is associated with intrauterine growth restriction in maternal heterozygotes. In homozygotes, the deficiency behaves as a Th null allele and can be rescued pharmacologically by bypassing the metabolic requirement for TH in utero. Our results show that the deleted interval is not required for normal imprinting on distal Chr 7 and uncover a new imprinted growth phenotype.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Síndrome de Beckwith-Wiedemann/genética , Impresión Genómica , Insulina/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Síndrome de Beckwith-Wiedemann/metabolismo , Cromosomas de los Mamíferos/genética , Cromosomas de los Mamíferos/metabolismo , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Humanos , Insulina/metabolismo , Masculino , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...