Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Cell Physiol ; 60(3): 612-625, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30496500

RESUMEN

Sessile plants reprogram their metabolic and developmental processes during adaptation to prolonged environmental stresses. To understand the molecular mechanisms underlying adaptation of plant cells to saline stress, we established callus suspension cell cultures from Arabidopsis roots adapted to high salt for an extended period of time. Adapted cells exhibit enhanced salt tolerance compared with control cells. Moreover, acquired salt tolerance is maintained even after the stress is relieved, indicating the existence of a memory of acquired salt tolerance during mitotic cell divisions, known as mitotic stress memory. Metabolite profiling using 1H-nuclear magnetic resonance (NMR) spectroscopy revealed metabolic discrimination between control, salt-adapted and stress-memory cells. Compared with control cells, salt-adapted cells accumulated higher levels of sugars, amino acids and intermediary metabolites in the shikimate pathway, such as coniferin. Moreover, adapted cells acquired thicker cell walls with higher lignin contents, suggesting the importance of adjustments of physical properties during adaptation to elevated saline conditions. When stress-memory cells were reverted to normal growth conditions, the levels of metabolites again readjusted. Whereas most of the metabolic changes reverted to levels intermediate between salt-adapted and control cells, the amounts of sugars, alanine, γ-aminobutyric acid and acetate further increased in stress-memory cells, supporting a view of their roles in mitotic stress memory. Our results provide insights into the metabolic adjustment of plant root cells during adaptation to saline conditions as well as pointing to the function of mitotic memory in acquired salt tolerance.


Asunto(s)
Arabidopsis/metabolismo , Metabolómica/métodos , Arabidopsis/genética , Mitosis/genética , Mitosis/fisiología , Estrés Salino/genética , Estrés Salino/fisiología , Tolerancia a la Sal/genética , Tolerancia a la Sal/fisiología
2.
Sci Rep ; 8(1): 10233, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29980711

RESUMEN

Korean fir (Abies koreana), a rare species endemic to South Korea, is sensitive to climate change. Here, we used next-generation massively parallel sequencing technology and de novo transcriptome assembly to gain a comprehensive overview of the Korean fir transcriptome under heat stress. Sequencing control and heat-treated samples of Korean fir, we obtained more than 194,872,650 clean reads from each sample. After de novo assembly and quantitative assessment, 42,056 unigenes were generated with an average length of 908 bp. In total, 6,401 differentially expressed genes were detected, of which 2,958 were up-regulated and 3,443 down-regulated, between the heat-treated and control samples. A gene ontology analysis of these unigenes revealed heat-stress-related terms, such as "response to stimulus". Further, in depth analysis revealed 204 transcription factors and 189 Hsps as differentially expressed. Finally, 12 regulated candidate genes associated with heat stress were examined using quantitative real-time PCR (qRT-PCR). In this study, we present the first comprehensive characterisation of Korean fir subjected to heat stress using transcriptome analysis. It provides an important resource for future studies of Korean fir with the objective of identifying heat stress tolerant lines.


Asunto(s)
Abies/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Proteínas de Plantas/genética , Transcriptoma , Abies/crecimiento & desarrollo , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , República de Corea
3.
Plant Physiol ; 171(3): 2112-26, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27208305

RESUMEN

A crucial prerequisite for plant growth and survival is the maintenance of potassium uptake, especially when high sodium surrounds the root zone. The Arabidopsis HIGH-AFFINITY K(+) TRANSPORTER1 (HKT1), and its homologs in other salt-sensitive dicots, contributes to salinity tolerance by removing Na(+) from the transpiration stream. However, TsHKT1;2, one of three HKT1 copies in Thellungiella salsuginea, a halophytic Arabidopsis relative, acts as a K(+) transporter in the presence of Na(+) in yeast (Saccharomyces cerevisiae). Amino-acid sequence comparisons indicated differences between TsHKT1;2 and most other published HKT1 sequences with respect to an Asp residue (D207) in the second pore-loop domain. Two additional T salsuginea and most other HKT1 sequences contain Asn (n) in this position. Wild-type TsHKT1;2 and altered AtHKT1 (AtHKT1(N-D)) complemented K(+)-uptake deficiency of yeast cells. Mutant hkt1-1 plants complemented with both AtHKT1(N) (-) (D) and TsHKT1;2 showed higher tolerance to salt stress than lines complemented by the wild-type AtHKT1 Electrophysiological analysis in Xenopus laevis oocytes confirmed the functional properties of these transporters and the differential selectivity for Na(+) and K(+) based on the n/d variance in the pore region. This change also dictated inward-rectification for Na(+) transport. Thus, the introduction of Asp, replacing Asn, in HKT1-type transporters established altered cation selectivity and uptake dynamics. We describe one way, based on a single change in a crucial protein that enabled some crucifer species to acquire improved salt tolerance, which over evolutionary time may have resulted in further changes that ultimately facilitated colonization of saline habitats.


Asunto(s)
Sustitución de Aminoácidos , Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Transporte de Catión/genética , Tolerancia a la Sal/fisiología , Simportadores/genética , Animales , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Brassicaceae/genética , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Cationes/metabolismo , Femenino , Modelos Moleculares , Oocitos , Plantas Modificadas Genéticamente , Saccharomyces cerevisiae/genética , Simportadores/química , Simportadores/metabolismo , Xenopus laevis
4.
Nat Commun ; 6: 8041, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26314500

RESUMEN

YUCCA (YUC) proteins constitute a family of flavin monooxygenases (FMOs), with an important role in auxin (IAA) biosynthesis. Here we report that Arabidopsis plants overexpressing YUC6 display enhanced IAA-related phenotypes and exhibit improved drought stress tolerance, low rate of water loss and controlled ROS accumulation under drought and oxidative stresses. Co-overexpression of an IAA-conjugating enzyme reduces IAA levels but drought stress tolerance is unaffected, indicating that the stress-related phenotype is not based on IAA overproduction. YUC6 contains a previously unrecognized FAD- and NADPH-dependent thiol-reductase activity (TR) that overlaps with the FMO domain involved in IAA biosynthesis. Mutation of a conserved cysteine residue (Cys-85) preserves FMO but suppresses TR activity and stress tolerance, whereas mutating the FAD- and NADPH-binding sites, that are common to TR and FMO domains, abolishes all outputs. We provide a paradigm for a single protein playing a dual role, regulating plant development and conveying stress defence responses.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas de Arabidopsis/genética , Sequías , Ácidos Indolacéticos/metabolismo , Oxigenasas de Función Mixta/genética , Estrés Oxidativo/genética , Oxidorreductasas/genética , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/genética , Compuestos de Sulfhidrilo/metabolismo , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxigenasas de Función Mixta/metabolismo , Mutación , Oxidorreductasas/metabolismo , Fenotipo
5.
New Phytol ; 207(3): 627-44, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25944243

RESUMEN

Mesembryanthemum crystallinum (ice plant) exhibits extreme tolerance to salt. Epidermal bladder cells (EBCs), developing on the surface of aerial tissues and specialized in sodium sequestration and other protective functions, are critical for the plant's stress adaptation. We present the first transcriptome analysis of EBCs isolated from intact plants, to investigate cell type-specific responses during plant salt adaptation. We developed a de novo assembled, nonredundant EBC reference transcriptome. Using RNAseq, we compared the expression patterns of the EBC-specific transcriptome between control and salt-treated plants. The EBC reference transcriptome consists of 37 341 transcript-contigs, of which 7% showed significantly different expression between salt-treated and control samples. We identified significant changes in ion transport, metabolism related to energy generation and osmolyte accumulation, stress signalling, and organelle functions, as well as a number of lineage-specific genes of unknown function, in response to salt treatment. The salinity-induced EBC transcriptome includes active transcript clusters, refuting the view of EBCs as passive storage compartments in the whole-plant stress response. EBC transcriptomes, differing from those of whole plants or leaf tissue, exemplify the importance of cell type-specific resolution in understanding stress adaptive mechanisms.


Asunto(s)
Mesembryanthemum/citología , Mesembryanthemum/genética , Epidermis de la Planta/citología , Epidermis de la Planta/genética , Salinidad , Transcriptoma/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Redes Reguladoras de Genes/efectos de los fármacos , Mesembryanthemum/efectos de los fármacos , Anotación de Secuencia Molecular , Epidermis de la Planta/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Transcriptoma/efectos de los fármacos
6.
Sci China Life Sci ; 58(3): 276-86, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25682393

RESUMEN

Gene co-expression networks provide an important tool for systems biology studies. Using microarray data from the ArrayExpress database, we constructed an Arabidopsis gene co-expression network, termed AtGGM2014, based on the graphical Gaussian model, which contains 102,644 co-expression gene pairs among 18,068 genes. The network was grouped into 622 gene co-expression modules. These modules function in diverse house-keeping, cell cycle, development, hormone response, metabolism, and stress response pathways. We developed a tool to facilitate easy visualization of the expression patterns of these modules either in a tissue context or their regulation under different treatment conditions. The results indicate that at least six modules with tissue-specific expression pattern failed to record modular regulation under various stress conditions. This discrepancy could be best explained by the fact that experiments to study plant stress responses focused mainly on leaves and less on roots, and thus failed to recover specific regulation pattern in other tissues. Overall, the modular structures revealed by our network provide extensive information to generate testable hypotheses about diverse plant signaling pathways. AtGGM2014 offers a constructive tool for plant systems biology studies.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica , Genes de Plantas
7.
Mol Cells ; 38(1): 40-50, 2015 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-25387755

RESUMEN

In the interaction between plants and pathogens, carbon (C) resources provide energy and C skeletons to maintain, among many functions, the plant immune system. However, variations in C availability on pathogen associated molecular pattern (PAMP) triggered immunity (PTI) have not been systematically examined. Here, three types of starch mutants with enhanced susceptibility to Pseudomonas syringae pv. tomato DC3000 hrcC were examined for PTI. In a dark period-dependent manner, the mutants showed compromised induction of a PTI marker, and callose accumulation in response to the bacterial PAMP flagellin, flg22. In combination with weakened PTI responses in wild type by inhibition of the TCA cycle, the experiments determined the necessity of C-derived energy in establishing PTI. Global gene expression analyses identified flg22 responsive genes displaying C supply-dependent patterns. Nutrient recycling-related genes were regulated similarly by C-limitation and flg22, indicating re-arrangements of expression programs to redirect resources that establish or strengthen PTI. Ethylene and NAC transcription factors appear to play roles in these processes. Under C-limitation, PTI appears compromised based on suppression of genes required for continued biosynthetic capacity and defenses through flg22. Our results provide a foundation for the intuitive perception of the interplay between plant nutrition status and pathogen defense.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/inmunología , Carbono/metabolismo , Hojas de la Planta/microbiología , Pseudomonas syringae/inmunología , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Flagelina/inmunología , Fluoroacetatos/farmacología , Regulación de la Expresión Génica de las Plantas , Mutación , Inmunidad de la Planta , Hojas de la Planta/inmunología
8.
Plant Physiol ; 164(4): 2123-38, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24563282

RESUMEN

Schrenkiella parvula (formerly Thellungiella parvula), a close relative of Arabidopsis (Arabidopsis thaliana) and Brassica crop species, thrives on the shores of Lake Tuz, Turkey, where soils accumulate high concentrations of multiple-ion salts. Despite the stark differences in adaptations to extreme salt stresses, the genomes of S. parvula and Arabidopsis show extensive synteny. S. parvula completes its life cycle in the presence of Na⁺, K⁺, Mg²âº, Li⁺, and borate at soil concentrations lethal to Arabidopsis. Genome structural variations, including tandem duplications and translocations of genes, interrupt the colinearity observed throughout the S. parvula and Arabidopsis genomes. Structural variations distinguish homologous gene pairs characterized by divergent promoter sequences and basal-level expression strengths. Comparative RNA sequencing reveals the enrichment of ion-transport functions among genes with higher expression in S. parvula, while pathogen defense-related genes show higher expression in Arabidopsis. Key stress-related ion transporter genes in S. parvula showed increased copy number, higher transcript dosage, and evidence for subfunctionalization. This extremophyte offers a framework to identify the requisite adjustments of genomic architecture and expression control for a set of genes found in most plants in a way to support distinct niche adaptation and lifestyles.


Asunto(s)
Adaptación Fisiológica/genética , Brassicaceae/genética , Brassicaceae/fisiología , Genoma de Planta/genética , Iones/farmacología , Transcriptoma/genética , Adaptación Fisiológica/efectos de los fármacos , Arabidopsis/fisiología , Brassicaceae/efectos de los fármacos , Duplicación de Gen/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Transporte Iónico/efectos de los fármacos , Transporte Iónico/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Familia de Multigenes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Sales (Química)/farmacología , Homología de Secuencia de Ácido Nucleico , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética
9.
Methods Mol Biol ; 1062: 27-51, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24057359

RESUMEN

The Arabidopsis-related model species (ARMS) Thellungiella salsuginea and Thellungiella parvula have generated broad interest in salt stress research. While general growth characteristics of these species are similar to Arabidopsis, some aspects of their life cycle require particular attention in order to obtain healthy plants, with a large production of seeds in a relatively short time. This chapter describes basic procedures for growth, maintenance, and Agrobacterium-mediated transformation of ARMS. Where appropriate, differences in requirements between Thellungiella spp. and Arabidopsis are highlighted, along with basic growth requirements of other less studied candidate model species. Current techniques for comparative genomics analysis between Arabidopsis and ARMS are also described in detail.


Asunto(s)
Arabidopsis/genética , Genoma de Planta , Transformación Genética , Agrobacterium/genética , Arabidopsis/crecimiento & desarrollo , Brassicaceae/genética , Brassicaceae/crecimiento & desarrollo , Técnicas de Cultivo , Germinación , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Preservación Biológica , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo
10.
PLoS Genet ; 9(10): e1003840, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24098147

RESUMEN

Understanding of gene regulatory networks requires discovery of expression modules within gene co-expression networks and identification of promoter motifs and corresponding transcription factors that regulate their expression. A commonly used method for this purpose is a top-down approach based on clustering the network into a range of densely connected segments, treating these segments as expression modules, and extracting promoter motifs from these modules. Here, we describe a novel bottom-up approach to identify gene expression modules driven by known cis-regulatory motifs in the gene promoters. For a specific motif, genes in the co-expression network are ranked according to their probability of belonging to an expression module regulated by that motif. The ranking is conducted via motif enrichment or motif position bias analysis. Our results indicate that motif position bias analysis is an effective tool for genome-wide motif analysis. Sub-networks containing the top ranked genes are extracted and analyzed for inherent gene expression modules. This approach identified novel expression modules for the G-box, W-box, site II, and MYB motifs from an Arabidopsis thaliana gene co-expression network based on the graphical Gaussian model. The novel expression modules include those involved in house-keeping functions, primary and secondary metabolism, and abiotic and biotic stress responses. In addition to confirmation of previously described modules, we identified modules that include new signaling pathways. To associate transcription factors that regulate genes in these co-expression modules, we developed a novel reporter system. Using this approach, we evaluated MYB transcription factor-promoter interactions within MYB motif modules.


Asunto(s)
Arabidopsis/genética , Biología Computacional , Redes Reguladoras de Genes , Transducción de Señal/genética , Algoritmos , Análisis por Conglomerados , Regulación de la Expresión Génica de las Plantas , Motivos de Nucleótidos , Regiones Promotoras Genéticas , Factores de Transcripción/genética
11.
Nat Commun ; 4: 1352, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23322040

RESUMEN

Environmental challenges to plants typically entail retardation of vegetative growth and delay or cessation of flowering. Here we report a link between the flowering time regulator, GIGANTEA (GI), and adaptation to salt stress that is mechanistically based on GI degradation under saline conditions, thus retarding flowering. GI, a switch in photoperiodicity and circadian clock control, and the SNF1-related protein kinase SOS2 functionally interact. In the absence of stress, the GI:SOS2 complex prevents SOS2-based activation of SOS1, the major plant Na(+)/H(+)-antiporter mediating adaptation to salinity. GI overexpressing, rapidly flowering, plants show enhanced salt sensitivity, whereas gi mutants exhibit enhanced salt tolerance and delayed flowering. Salt-induced degradation of GI confers salt tolerance by the release of the SOS2 kinase. The GI-SOS2 interaction introduces a higher order regulatory circuit that can explain in molecular terms, the long observed connection between floral transition and adaptive environmental stress tolerance in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Tolerancia a la Sal/fisiología , Arabidopsis/efectos de los fármacos , Flores/fisiología , Modelos Biológicos , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Tolerancia a la Sal/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Cloruro de Sodio/farmacología , Intercambiadores de Sodio-Hidrógeno/metabolismo , Estrés Fisiológico/efectos de los fármacos , Factores de Tiempo
12.
Mol Plant ; 6(2): 337-49, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22986790

RESUMEN

Indole-3-acetic acid (IAA), a major plant auxin, is produced in both tryptophan-dependent and tryptophan-independent pathways. A major pathway in Arabidopsis thaliana generates IAA in two reactions from tryptophan. Step one converts tryptophan to indole-3-pyruvic acid (IPA) by tryptophan aminotransferases followed by a rate-limiting step converting IPA to IAA catalyzed by YUCCA proteins. We identified eight putative StYUC (Solanum tuberosum YUCCA) genes whose deduced amino acid sequences share 50%-70% identity with those of Arabidopsis YUCCA proteins. All include canonical, conserved YUCCA sequences: FATGY motif, FMO signature sequence, and FAD-binding and NADP-binding sequences. In addition, five genes were found with ~50% amino acid sequence identity to Arabidopsis tryptophan aminotransferases. Transgenic potato (Solanum tuberosum cv. Jowon) constitutively overexpressing Arabidopsis AtYUC6 displayed high-auxin phenotypes such as narrow downward-curled leaves, increased height, erect stature, and longevity. Transgenic potato plants overexpressing AtYUC6 showed enhanced drought tolerance based on reduced water loss. The phenotype was correlated with reduced levels of reactive oxygen species in leaves. The results suggest a functional YUCCA pathway of auxin biosynthesis in potato that may be exploited to alter plant responses to the environment.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Oxigenasas de Función Mixta/genética , Fenotipo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Agua/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Bases de Datos Genéticas , Expresión Génica , Oxigenasas de Función Mixta/química , Datos de Secuencia Molecular , Solanum tuberosum/fisiología , Estrés Fisiológico , Triptófano-Transaminasa/genética
13.
Plant Physiol ; 161(1): 362-73, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23154535

RESUMEN

Although a role for microRNA399 (miR399) in plant responses to phosphate (Pi) starvation has been indicated, the regulatory mechanism underlying miR399 gene expression is not clear. Here, we report that AtMYB2 functions as a direct transcriptional activator for miR399 in Arabidopsis (Arabidopsis thaliana) Pi starvation signaling. Compared with untransformed control plants, transgenic plants constitutively overexpressing AtMYB2 showed increased miR399f expression and tissue Pi contents under high Pi growth and exhibited elevated expression of a subset of Pi starvation-induced genes. Pi starvation-induced root architectural changes were more exaggerated in AtMYB2-overexpressing transgenic plants compared with the wild type. AtMYB2 directly binds to a MYB-binding site in the miR399f promoter in vitro, as well as in vivo, and stimulates miR399f promoter activity in Arabidopsis protoplasts. Transcription of AtMYB2 itself is induced in response to Pi deficiency, and the tissue expression patterns of miR399f and AtMYB2 are similar. Both genes are expressed mainly in vascular tissues of cotyledons and in roots. Our results suggest that AtMYB2 regulates plant responses to Pi starvation by regulating the expression of the miR399 gene.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , MicroARNs/metabolismo , Fosfatos/metabolismo , Compuestos de Potasio/metabolismo , Transactivadores/metabolismo , Activación Transcripcional , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sitios de Unión , Inmunoprecipitación de Cromatina , Cotiledón/genética , Cotiledón/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , MicroARNs/genética , Fosfatos/farmacología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Compuestos de Potasio/farmacología , Regiones Promotoras Genéticas , Unión Proteica , Protoplastos/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Transducción de Señal , Transactivadores/genética
14.
PLoS One ; 7(8): e43198, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22912824

RESUMEN

The discovery of DNA regulatory motifs in the sequenced genomes using computational methods remains challenging. Here, we present MotifIndexer--a comprehensive strategy for de novo identification of DNA regulatory motifs at a genome level. Using word-counting methods, we indexed the existence of every 8-mer oligo composed of bases A, C, G, T, r, y, s, w, m, k, n or 12-mer oligo composed of A, C, G, T, n, in the promoters of all predicted genes of Arabidopsis thaliana genome and of selected stress-induced co-expressed genes. From this analysis, we identified number of over-represented motifs. Among these, major critical motifs were identified using a position filter. We used a model based on uniform distribution and the z-scores derived from this model to describe position bias. Interestingly, many motifs showed position bias towards the transcription start site. We extended this model to show biased distribution of motifs in the genomes of both A. thaliana and rice. We also used MotifIndexer to identify conserved motifs in co-expressed gene groups from two Arabidopsis species, A. thaliana and A. lyrata. This new comparative genomics method does not depend on alignments of homologous gene promoter sequences.


Asunto(s)
Arabidopsis/genética , Motivos de Nucleótidos/genética , Oryza/genética , Elementos Reguladores de la Transcripción/genética , Estrés Fisiológico/genética , Genómica/métodos , Modelos Genéticos , Oligorribonucleótidos/genética , Regiones Promotoras Genéticas/genética , Especificidad de la Especie
15.
Proc Natl Acad Sci U S A ; 109(30): 12219-24, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22778405

RESUMEN

Thellungiella salsuginea, a close relative of Arabidopsis, represents an extremophile model for abiotic stress tolerance studies. We present the draft sequence of the T. salsuginea genome, assembled based on ~134-fold coverage to seven chromosomes with a coding capacity of at least 28,457 genes. This genome provides resources and evidence about the nature of defense mechanisms constituting the genetic basis underlying plant abiotic stress tolerance. Comparative genomics and experimental analyses identified genes related to cation transport, abscisic acid signaling, and wax production prominent in T. salsuginea as possible contributors to its success in stressful environments.


Asunto(s)
Adaptación Biológica/genética , Brassicaceae/genética , Brassicaceae/fisiología , Genoma de Planta/genética , Plantas Tolerantes a la Sal/genética , Ácido Abscísico/metabolismo , Secuencia de Bases , Proteínas de Transporte de Catión/genética , Biología Computacional , Cartilla de ADN/genética , Duplicación de Gen/genética , Biblioteca de Genes , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética , Especificidad de la Especie
16.
Genome Biol ; 13(3): 241, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22390828

RESUMEN

Extremophile plants thrive in places where most plant species cannot survive. Recent developments in high-throughput technologies and comparative genomics are shedding light on the evolutionary mechanisms leading to their adaptation.


Asunto(s)
Adaptación Fisiológica/genética , Genoma de Planta , Plantas/genética , Evolución Biológica , Frío , Variaciones en el Número de Copia de ADN , Elementos Transponibles de ADN , Epigénesis Genética , Genómica , Calor , MicroARNs , Salinidad , Secuencias Repetidas en Tándem
17.
Plant Physiol ; 158(3): 1463-74, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22238420

RESUMEN

Cellular Na(+)/K(+) ratio is a crucial parameter determining plant salinity stress resistance. We tested the function of plasma membrane Na(+)/K(+) cotransporters in the High-affinity K(+) Transporter (HKT) family from the halophytic Arabidopsis (Arabidopsis thaliana) relative Thellungiella salsuginea. T. salsuginea contains at least two HKT genes. TsHKT1;1 is expressed at very low levels, while the abundant TsHKT1;2 is transcriptionally strongly up-regulated by salt stress. TsHKT-based RNA interference in T. salsuginea resulted in Na(+) sensitivity and K(+) deficiency. The athkt1 mutant lines overexpressing TsHKT1;2 proved less sensitive to Na(+) and showed less K(+) deficiency than lines overexpressing AtHKT1. TsHKT1;2 ectopically expressed in yeast mutants lacking Na(+) or K(+) transporters revealed strong K(+) transporter activity and selectivity for K(+) over Na(+). Altering two amino acid residues in TsHKT1;2 to mimic the AtHKT1 sequence resulted in enhanced sodium uptake and loss of the TsHKT1;2 intrinsic K(+) transporter activity. We consider the maintenance of K(+) uptake through TsHKT1;2 under salt stress an important component supporting the halophytic lifestyle of T. salsuginea.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Brassicaceae/fisiología , Proteínas de Transporte de Catión/metabolismo , Potasio/metabolismo , Cloruro de Sodio/farmacología , Simportadores/metabolismo , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Transporte Biológico , Brassicaceae/efectos de los fármacos , Brassicaceae/genética , Proteínas de Transporte de Catión/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Homeostasis , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Filogenia , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Interferencia de ARN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Plantas Tolerantes a la Sal/efectos de los fármacos , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/fisiología , Sodio/metabolismo , Especificidad de la Especie , Especificidad por Sustrato , Simportadores/genética
18.
Mol Cells ; 32(4): 305-16, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21912873

RESUMEN

The traditional focus on the central dogma of molecular biology, from gene through RNA to protein, has now been replaced by the recognition of an additional mechanism. The new regulatory mechanism, post-translational modifications to proteins, can actively alter protein function or activity introducing additional levels of functional complexity by altering cellular and sub-cellular location, protein interactions and the outcome of biochemical reaction chains. Modifications by ubiquitin (Ub) and ubiquitin-like modifiers systems are conserved in all eukaryotic organisms. One of them, small ubiquitin-like modifier (SUMO) is present in plants. The SUMO mechanism includes several isoforms of proteins that are involved in reactions of sumoylation and de-sumoylation. Sumoylation affects several important processes in plants. Outstanding among those are responses to environmental stresses. These may be abiotic stresses, such as phosphate deficiency, heat, low temperature, and drought, or biotic stressses, as well including defense reactions to pathogen infection. Also, the regulations of flowering time, cell growth and development, and nitrogen assimilation have recently been added to this list. Identification of SUMO targets is material to characterize the function of sumoylation or desumoylation. Affinity purification and mass spectrometric identification have been done lately in plants. Further SUMO noncovalent binding appears to have function in other model organisms and SUMO interacting proteins in plants will be of interest to plant biologists who dissect the dynamic function of SUMO. This review will discuss results of recent insights into the role of sumoylation in plants.


Asunto(s)
Plantas , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Sumoilación , Animales , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Fenómenos Fisiológicos de las Plantas , Procesamiento Proteico-Postraduccional , Estrés Fisiológico , Ubiquitina/metabolismo
19.
Nat Genet ; 43(9): 913-8, 2011 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-21822265

RESUMEN

Thellungiella parvula is related to Arabidopsis thaliana and is endemic to saline, resource-poor habitats, making it a model for the evolution of plant adaptation to extreme environments. Here we present the draft genome for this extremophile species. Exclusively by next generation sequencing, we obtained the de novo assembled genome in 1,496 gap-free contigs, closely approximating the estimated genome size of 140 Mb. We anchored these contigs to seven pseudo chromosomes without the use of maps. We show that short reads can be assembled to a near-complete chromosome level for a eukaryotic species lacking prior genetic information. The sequence identifies a number of tandem duplications that, by the nature of the duplicated genes, suggest a possible basis for T. parvula's extremophile lifestyle. Our results provide essential background for developing genomically influenced testable hypotheses for the evolution of environmental stress tolerance.


Asunto(s)
Brassicaceae/genética , Cromosomas de las Plantas/genética , Genoma de Planta , Secuencia de Bases , Datos de Secuencia Molecular , Salinidad , Estrés Fisiológico/genética , Secuencias Repetidas en Tándem
20.
Mol Cells ; 32(2): 143-51, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21607647

RESUMEN

Reversible conjugation of the small ubiquitin modifier (SUMO) peptide to proteins (SUMOylation) plays important roles in cellular processes in animals and yeasts. However, little is known about plant SUMO targets. To identify SUMO substrates in Arabidopsis and to probe for biological functions of SUMO proteins, we constructed 6xHis-3xFLAG fused AtSUMO1 (HFAtSUMO1) controlled by the CaMV35S promoter for transformation into Arabidopsis Col-0. After heat treatment, an increased sumoylation pattern was detected in the transgenic plants. SUMO1-modified proteins were selected after two-dimensional gel electrophoresis (2-DE) image analysis and identified using matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). We identified 27 proteins involved in a variety of processes such as nucleic acid metabolism, signaling, metabolism, and including proteins of unknown functions. Binding and sumoylation patterns were confirmed independently. Surprisingly, MCM3 (At5G46280), a DNA replication licensing factor, only interacted with and became sumoylated by AtSUMO1, but not by SUMO1ΔGG or AtSUMO3. The results suggest specific interactions between sumoylation targets and particular sumoylation enzymes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Raíces de Plantas/fisiología , Proteínas de Arabidopsis/genética , Diferenciación Celular , Células Cultivadas , Calor , Proteínas Mutantes/genética , Ácidos Nucleicos/metabolismo , Raíces de Plantas/química , Unión Proteica/genética , Ingeniería de Proteínas , Procesamiento Proteico-Postraduccional , Proteómica , Proteínas Recombinantes de Fusión/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...