Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Chem Biol ; 20(3): 291-301, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37770698

RESUMEN

Diverse mechanisms have been described for selective enrichment of biomolecules in membrane-bound organelles, but less is known about mechanisms by which molecules are selectively incorporated into biomolecular assemblies such as condensates that lack surrounding membranes. The chemical environments within condensates may differ from those outside these bodies, and if these differed among various types of condensate, then the different solvation environments would provide a mechanism for selective distribution among these intracellular bodies. Here we use small molecule probes to show that different condensates have distinct chemical solvating properties and that selective partitioning of probes in condensates can be predicted with deep learning approaches. Our results demonstrate that different condensates harbor distinct chemical environments that influence the distribution of molecules, show that clues to condensate chemical grammar can be ascertained by machine learning and suggest approaches to facilitate development of small molecule therapeutics with optimal subcellular distribution and therapeutic benefit.


Asunto(s)
Condensados Biomoleculares , Aprendizaje Automático
3.
Mol Cell ; 82(19): 3580-3597.e9, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36206738

RESUMEN

Maintenance of appropriate cell states involves epigenetic mechanisms, including Polycomb-group (PcG)-mediated transcriptional repression. While PcG proteins are known to induce chromatin compaction, how PcG proteins gain access to DNA in compact chromatin to achieve long-term silencing is poorly understood. Here, we show that the p300/CREB-binding protein (CBP) co-activator is associated with two-thirds of PcG regions and required for PcG occupancy at many of these in Drosophila and mouse cells. CBP stabilizes RNA polymerase II (Pol II) at PcG-bound repressive sites and promotes Pol II pausing independently of its histone acetyltransferase activity. CBP and Pol II pausing are necessary for RNA-DNA hybrid (R-loop) formation and nucleosome depletion at Polycomb Response Elements (PREs), whereas transcription beyond the pause region is not. These results suggest that non-enzymatic activities of the CBP co-activator have been repurposed to support PcG-mediated silencing, revealing how chromatin regulator interplay maintains transcriptional states.


Asunto(s)
Proteínas de Drosophila , Nucleosomas , Animales , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Cromatina/genética , Cromatina/metabolismo , ADN/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ratones , Nucleosomas/genética , Nucleosomas/metabolismo , Complejo Represivo Polycomb 1/genética , Proteínas del Grupo Polycomb/metabolismo , Unión Proteica , ARN/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
4.
Nature ; 606(7913): 406-413, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35650434

RESUMEN

All multicellular organisms rely on differential gene transcription regulated by genomic enhancers, which function through cofactors that are recruited by transcription factors1,2. Emerging evidence suggests that not all cofactors are required at all enhancers3-5, yet whether these observations reflect more general principles or distinct types of enhancers remained unknown. Here we categorized human enhancers by their cofactor dependencies and show that these categories provide a framework to understand the sequence and chromatin diversity of enhancers and their roles in different gene-regulatory programmes. We quantified enhancer activities along the entire human genome using STARR-seq6 in HCT116 cells, following the rapid degradation of eight cofactors. This analysis identified different types of enhancers with distinct cofactor requirements, sequences and chromatin properties. Some enhancers were insensitive to the depletion of the core Mediator subunit MED14 or the bromodomain protein BRD4 and regulated distinct transcriptional programmes. In particular, canonical Mediator7 seemed dispensable for P53-responsive enhancers, and MED14-depleted cells induced endogenous P53 target genes. Similarly, BRD4 was not required for the transcription of genes that bear CCAAT boxes and a TATA box (including histone genes and LTR12 retrotransposons) or for the induction of heat-shock genes. This categorization of enhancers through cofactor dependencies reveals distinct enhancer types that can bypass broadly utilized cofactors, which illustrates how alternative ways to activate transcription separate gene expression programmes and provide a conceptual framework to understand enhancer function and regulatory specificity.


Asunto(s)
Elementos de Facilitación Genéticos , Factores de Transcripción , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Elementos de Facilitación Genéticos/genética , Humanos , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
5.
ACS Cent Sci ; 7(8): 1408-1418, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34471684

RESUMEN

Dysregulation of the transcription factor MYC is involved in many human cancers. The dimeric transcription factor complexes of MYC/MAX and MAX/MAX activate or inhibit, respectively, gene transcription upon binding to the same enhancer box DNA. Targeting these complexes in cancer is a long-standing challenge. Inspired by the inhibitory activity of the MAX/MAX dimer, we engineered covalently linked, synthetic homo- and heterodimeric protein complexes to attenuate oncogenic MYC-driven transcription. We prepared the covalent protein complexes (∼20 kDa, 167-231 residues) in a single shot via parallel automated flow synthesis in hours. The stabilized covalent dimers display DNA binding activity, are intrinsically cell-penetrant, and inhibit cancer cell proliferation in different cell lines. RNA sequencing and gene set enrichment analysis in A549 cancer cells confirmed that the synthetic dimers interfere with MYC-driven transcription. Our results demonstrate the potential of automated flow technology to rapidly deliver engineered synthetic protein complex mimetics that can serve as a starting point in developing inhibitors of MYC-driven cancer cell growth.

6.
J Am Chem Soc ; 143(30): 11788-11798, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34289685

RESUMEN

Transcription factors (TF), such as Myc, are proteins implicated in disease pathogenesis, with dysregulation of Myc expression in 50% of all human cancers. Still, targeting Myc remains a challenge due to the lack of small molecule binding pockets in the tertiary structure. Here, we report synthetic covalently linked TF mimetics that inhibit oncogenic Myc-driven transcription by antagonistic binding of the target DNA-binding site. We combined automated flow peptide chemistry with palladium(II) oxidative addition complexes (OACs) to engineer covalent protein dimers derived from the DNA-binding domains of Myc, Max, and Omomyc TF analogs. Palladium-mediated cross-coupling of synthesized protein monomers resulted in milligram quantities of seven different covalent homo- and heterodimers. The covalent helical dimers were found to bind DNA and exhibited improved thermal stability. Cell-based studies revealed the Max-Max covalent dimer is cell-penetrating and interfered with Myc-dependent gene transcription resulting in reduced cancer cell proliferation (EC50 of 6 µM in HeLa). RNA sequencing and gene analysis of extracted RNA from treated cancer cells confirmed that the covalent Max-Max homodimer interferes with Myc-dependent transcription. Flow chemistry, combined with palladium(II) OACs, has enabled a practical strategy to generate new bioactive compounds to inhibit tumor cell proliferation.


Asunto(s)
Indicadores y Reactivos/química , Paladio/química , Ingeniería de Proteínas , Proteínas Proto-Oncogénicas c-myc/síntesis química , Proliferación Celular/efectos de los fármacos , ADN/química , Células HeLa , Humanos , Indicadores y Reactivos/farmacología , Modelos Moleculares , Paladio/farmacología , Multimerización de Proteína , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/genética
7.
Cancer Cell ; 39(2): 174-192, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33417833

RESUMEN

Malignant transformation is characterized by dysregulation of diverse cellular processes that have been the subject of detailed genetic, biochemical, and structural studies, but only recently has evidence emerged that many of these processes occur in the context of biomolecular condensates. Condensates are membrane-less bodies, often formed by liquid-liquid phase separation, that compartmentalize protein and RNA molecules with related functions. New insights from condensate studies portend a profound transformation in our understanding of cellular dysregulation in cancer. Here we summarize key features of biomolecular condensates, note where they have been implicated-or will likely be implicated-in oncogenesis, describe evidence that the pharmacodynamics of cancer therapeutics can be greatly influenced by condensates, and discuss some of the questions that must be addressed to further advance our understanding and treatment of cancer.


Asunto(s)
Neoplasias/genética , Carcinogénesis/genética , Humanos , Proteínas/genética , ARN/genética
8.
Science ; 368(6497): 1386-1392, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32554597

RESUMEN

The nucleus contains diverse phase-separated condensates that compartmentalize and concentrate biomolecules with distinct physicochemical properties. Here, we investigated whether condensates concentrate small-molecule cancer therapeutics such that their pharmacodynamic properties are altered. We found that antineoplastic drugs become concentrated in specific protein condensates in vitro and that this occurs through physicochemical properties independent of the drug target. This behavior was also observed in tumor cells, where drug partitioning influenced drug activity. Altering the properties of the condensate was found to affect the concentration and activity of drugs. These results suggest that selective partitioning and concentration of small molecules within condensates contributes to drug pharmacodynamics and that further understanding of this phenomenon may facilitate advances in disease therapy.


Asunto(s)
Antineoplásicos/farmacología , Núcleo Celular/metabolismo , Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Antineoplásicos/uso terapéutico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Subunidad 1 del Complejo Mediador/genética , Subunidad 1 del Complejo Mediador/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Mol Cell ; 76(5): 753-766.e6, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31563432

RESUMEN

The gene expression programs that define the identity of each cell are controlled by master transcription factors (TFs) that bind cell-type-specific enhancers, as well as signaling factors, which bring extracellular stimuli to these enhancers. Recent studies have revealed that master TFs form phase-separated condensates with the Mediator coactivator at super-enhancers. Here, we present evidence that signaling factors for the WNT, TGF-ß, and JAK/STAT pathways use their intrinsically disordered regions (IDRs) to enter and concentrate in Mediator condensates at super-enhancers. We show that the WNT coactivator ß-catenin interacts both with components of condensates and DNA-binding factors to selectively occupy super-enhancer-associated genes. We propose that the cell-type specificity of the response to signaling is mediated in part by the IDRs of the signaling factors, which cause these factors to partition into condensates established by the master TFs and Mediator at genes with prominent roles in cell identity.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Complejo Mediador/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Regulación de la Expresión Génica/fisiología , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Complejo Mediador/fisiología , Factores de Transcripción STAT/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/fisiología , Proteína smad3/metabolismo , Proteínas de la Superfamilia TGF-beta/metabolismo , Transcripción Genética , Vía de Señalización Wnt , beta Catenina/metabolismo
10.
Nature ; 572(7770): 543-548, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31391587

RESUMEN

The synthesis of pre-mRNA by RNA polymerase II (Pol II) involves the formation of a transcription initiation complex, and a transition to an elongation complex1-4. The large subunit of Pol II contains an intrinsically disordered C-terminal domain that is phosphorylated by cyclin-dependent kinases during the transition from initiation to elongation, thus influencing the interaction of the C-terminal domain with different components of the initiation or the RNA-splicing apparatus5,6. Recent observations suggest that this model provides only a partial picture of the effects of phosphorylation of the C-terminal domain7-12. Both the transcription-initiation machinery and the splicing machinery can form phase-separated condensates that contain large numbers of component molecules: hundreds of molecules of Pol II and mediator are concentrated in condensates at super-enhancers7,8, and large numbers of splicing factors are concentrated in nuclear speckles, some of which occur at highly active transcription sites9-12. Here we investigate whether the phosphorylation of the Pol II C-terminal domain regulates the incorporation of Pol II into phase-separated condensates that are associated with transcription initiation and splicing. We find that the hypophosphorylated C-terminal domain of Pol II is incorporated into mediator condensates and that phosphorylation by regulatory cyclin-dependent kinases reduces this incorporation. We also find that the hyperphosphorylated C-terminal domain is preferentially incorporated into condensates that are formed by splicing factors. These results suggest that phosphorylation of the Pol II C-terminal domain drives an exchange from condensates that are involved in transcription initiation to those that are involved in RNA processing, and implicates phosphorylation as a mechanism that regulates condensate preference.


Asunto(s)
Complejo Mediador/química , Complejo Mediador/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Empalme del ARN , Transcripción Genética , Animales , Línea Celular , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica/genética , Humanos , Complejo Mediador/genética , Ratones , Fosforilación , Dominios Proteicos , ARN Polimerasa II/genética , Factores de Empalme de ARN/química , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo
11.
Mol Cell ; 75(3): 549-561.e7, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398323

RESUMEN

Enhancers are DNA elements that are bound by transcription factors (TFs), which recruit coactivators and the transcriptional machinery to genes. Phase-separated condensates of TFs and coactivators have been implicated in assembling the transcription machinery at particular enhancers, yet the role of DNA sequence in this process has not been explored. We show that DNA sequences encoding TF binding site number, density, and affinity above sharply defined thresholds drive condensation of TFs and coactivators. A combination of specific structured (TF-DNA) and weak multivalent (TF-coactivator) interactions allows for condensates to form at particular genomic loci determined by the DNA sequence and the complement of expressed TFs. DNA features found to drive condensation promote enhancer activity and transcription in cells. Our study provides a framework to understand how the genome can scaffold transcriptional condensates at specific loci and how the universal phenomenon of phase separation might regulate this process.


Asunto(s)
Cromatina/genética , Elementos de Facilitación Genéticos , Factores de Transcripción/genética , Transcripción Genética , Animales , Secuencia de Bases/genética , Sitios de Unión/genética , ADN/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Genómica , Ratones , Células Madre Embrionarias de Ratones
12.
Cell ; 175(7): 1842-1855.e16, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30449618

RESUMEN

Gene expression is controlled by transcription factors (TFs) that consist of DNA-binding domains (DBDs) and activation domains (ADs). The DBDs have been well characterized, but little is known about the mechanisms by which ADs effect gene activation. Here, we report that diverse ADs form phase-separated condensates with the Mediator coactivator. For the OCT4 and GCN4 TFs, we show that the ability to form phase-separated droplets with Mediator in vitro and the ability to activate genes in vivo are dependent on the same amino acid residues. For the estrogen receptor (ER), a ligand-dependent activator, we show that estrogen enhances phase separation with Mediator, again linking phase separation with gene activation. These results suggest that diverse TFs can interact with Mediator through the phase-separating capacity of their ADs and that formation of condensates with Mediator is involved in gene activation.


Asunto(s)
Células Madre Embrionarias de Ratones/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Receptores de Estrógenos/metabolismo , Activación Transcripcional/fisiología , Animales , Células HEK293 , Humanos , Ratones , Células Madre Embrionarias de Ratones/citología , Factor 3 de Transcripción de Unión a Octámeros/genética , Dominios Proteicos , Receptores de Estrógenos/genética
13.
Science ; 361(6400)2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29930091

RESUMEN

Super-enhancers (SEs) are clusters of enhancers that cooperatively assemble a high density of the transcriptional apparatus to drive robust expression of genes with prominent roles in cell identity. Here we demonstrate that the SE-enriched transcriptional coactivators BRD4 and MED1 form nuclear puncta at SEs that exhibit properties of liquid-like condensates and are disrupted by chemicals that perturb condensates. The intrinsically disordered regions (IDRs) of BRD4 and MED1 can form phase-separated droplets, and MED1-IDR droplets can compartmentalize and concentrate the transcription apparatus from nuclear extracts. These results support the idea that coactivators form phase-separated condensates at SEs that compartmentalize and concentrate the transcription apparatus, suggest a role for coactivator IDRs in this process, and offer insights into mechanisms involved in the control of key cell-identity genes.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Proteínas Intrínsecamente Desordenadas/metabolismo , Subunidad 1 del Complejo Mediador/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Secuencia Conservada , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos/efectos de los fármacos , Recuperación de Fluorescencia tras Fotoblanqueo , Regulación de la Expresión Génica/efectos de los fármacos , Glicoles/farmacología , Células HEK293 , Humanos , Inmunoprecipitación , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Subunidad 1 del Complejo Mediador/química , Subunidad 1 del Complejo Mediador/genética , Ratones , Imagen Molecular , Células 3T3 NIH , Proteínas Nucleares/química , Proteínas Nucleares/genética , Serina/química , Serina/genética , Transactivadores/química , Transactivadores/genética , Factores de Transcripción/química , Factores de Transcripción/genética
14.
Mol Cell ; 68(3): 491-503.e5, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29056321

RESUMEN

Transcription activation involves RNA polymerase II (Pol II) recruitment and release from the promoter into productive elongation, but how specific chromatin regulators control these steps is unclear. Here, we identify a novel activity of the histone acetyltransferase p300/CREB-binding protein (CBP) in regulating promoter-proximal paused Pol II. We find that Drosophila CBP inhibition results in "dribbling" of Pol II from the pause site to positions further downstream but impedes transcription through the +1 nucleosome genome-wide. Promoters strongly occupied by CBP and GAGA factor have high levels of paused Pol II, a unique chromatin signature, and are highly expressed regardless of cell type. Interestingly, CBP activity is rate limiting for Pol II recruitment to these highly paused promoters through an interaction with TFIIB but for transit into elongation by histone acetylation at other genes. Thus, CBP directly stimulates both Pol II recruitment and the ability to traverse the first nucleosome, thereby promoting transcription of most genes.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Nucleosomas/enzimología , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Animales , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Nucleosomas/genética , Unión Proteica , ARN Polimerasa II/genética , Factor de Transcripción TFIIB/genética , Factor de Transcripción TFIIB/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Factores de Transcripción p300-CBP/genética
15.
Elife ; 62017 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-28327288

RESUMEN

Mutations in human Atrophin1, a transcriptional corepressor, cause dentatorubral-pallidoluysian atrophy, a neurodegenerative disease. Drosophila Atrophin (Atro) mutants display many phenotypes, including neurodegeneration, segmentation, patterning and planar polarity defects. Despite Atro's critical role in development and disease, relatively little is known about Atro's binding partners and downstream targets. We present the first genomic analysis of Atro using ChIP-seq against endogenous Atro. ChIP-seq identified 1300 potential direct targets of Atro including engrailed, and components of the Dpp and Notch signaling pathways. We show that Atro regulates Dpp and Notch signaling in larval imaginal discs, at least partially via regulation of thickveins and fringe. In addition, bioinformatics analyses, sequential ChIP and coimmunoprecipitation experiments reveal that Atro interacts with the Drosophila GAGA Factor, Trithorax-like (Trl), and they bind to the same loci simultaneously. Phenotypic analyses of Trl and Atro clones suggest that Atro is required to modulate the transcription activation by Trl in larval imaginal discs. Taken together, these data indicate that Atro is a major Trl cofactor that functions to moderate developmental gene transcription.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Inmunoprecipitación de Cromatina , Mapeo de Interacción de Proteínas , Análisis de Secuencia de ADN
16.
Epigenetics Chromatin ; 9(1): 38, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27625704

RESUMEN

[This corrects the article DOI: 10.1186/s13072-015-0042-4.].

17.
Proc Natl Acad Sci U S A ; 113(31): 8735-40, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27439862

RESUMEN

Epigenetic patterns of histone modifications contribute to the maintenance of tissue-specific gene expression. Here, we show that such modifications also accompany the specification of cell identities by the NF-κB transcription factor Dorsal in the precellular Drosophila embryo. We provide evidence that the maternal pioneer factor, Zelda, is responsible for establishing poised RNA polymerase at Dorsal target genes before Dorsal-mediated zygotic activation. At the onset of cell specification, Dorsal recruits the CBP/p300 coactivator to the regulatory regions of defined target genes in the presumptive neuroectoderm, resulting in their histone acetylation and transcriptional activation. These genes are inactive in the mesoderm due to transcriptional quenching by the Snail repressor, which precludes recruitment of CBP and prevents histone acetylation. By contrast, inactivation of the same enhancers in the dorsal ectoderm is associated with Polycomb-repressed H3K27me3 chromatin. Thus, the Dorsal morphogen gradient produces three distinct histone signatures including two modes of transcriptional repression, active repression (hypoacetylation), and inactivity (H3K27me3). Whereas histone hypoacetylation is associated with a poised polymerase, H3K27me3 displaces polymerase from chromatin. Our results link different modes of RNA polymerase regulation to separate epigenetic patterns and demonstrate that developmental determinants orchestrate differential chromatin states, providing new insights into the link between epigenetics and developmental patterning.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Epigénesis Genética , Proteínas Nucleares/genética , Acetilación , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Placa Neural/embriología , Placa Neural/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-26604986

RESUMEN

BACKGROUND: CREB-binding protein (CBP, also known as nejire) is a transcriptional co-activator that is conserved in metazoans. CBP plays an important role in embryonic development and cell differentiation and mutations in CBP can lead to various diseases in humans. In addition, CBP and the related p300 protein have successfully been used to predict enhancers in both humans and flies when they occur with monomethylation of histone H3 on lysine 4 (H3K4me1). RESULTS: Here, we compare CBP chromatin immunoprecipitation sequencing data from Drosophila S2 cells with modENCODE data and show that CBP is bound at genomic sites with a wide range of functions. As expected, we find that CBP is bound at active promoters and enhancers. In addition, we find that the strongest CBP sites in the genome are found at Polycomb response elements embedded in histone H3 lysine 27 trimethylated (H3K27me3) chromatin, where they correlate with binding of the Pho repressive complex. Interestingly, we find that CBP also binds to most insulators in the genome. At a subset of these, CBP may regulate insulating activity, measured as the ability to prevent repressive H3K27 methylation from spreading into adjacent chromatin. CONCLUSIONS: We conclude that CBP could be involved in a much wider range of functions than has previously been appreciated, including Polycomb repression and insulator activity. In addition, we discuss the possibility that a common role for CBP at all functional elements may be to regulate interactions between distant chromosomal regions and speculate that CBP is controlling higher order chromatin organization.

19.
Mol Reprod Dev ; 82(10): 735-46, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26099731

RESUMEN

In order for a new organism to form, the genomes of the highly specialized egg and sperm need to be reprogrammed into a totipotent state that is capable of generating all of the cell types that comprise an organism. This reprogramming occurs by erasing chromatin modifications, leaving the cells in a naïve state, followed by the induction of specialized programming events. Pioneer factors bind to the genome prior to zygotic genome activation, followed by acetylation of histones and further chromatin specialization by the addition of methylation marks later during differentiation. Genome-wide approaches have provided insight into the genomic and epigenomic regulation of gene expression during development, providing a new perspective on the process of cell specification and differentiation. In this review, we discuss how distal DNA and core promoter elements, RNA polymerase pausing, transcription factors, and co-regulators interact to shape the chromatin landscape and direct tissue-specific expression patterns during embryo development, focusing on the well-characterized Drosophila embryo.


Asunto(s)
Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Animales , Tipificación del Cuerpo , Drosophila/embriología , Drosophila/genética , Epigénesis Genética , Fertilización , Genoma , Heterocromatina , Humanos , Transcripción Genética , Cigoto
20.
PLoS Genet ; 8(6): e1002769, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22737084

RESUMEN

CBP and the related p300 protein are widely used transcriptional co-activators in metazoans that interact with multiple transcription factors. Whether CBP/p300 occupies the genome equally with all factors or preferentially binds together with some factors is not known. We therefore compared Drosophila melanogaster CBP (nejire) ChIP-seq peaks with regions bound by 40 different transcription factors in early embryos, and we found high co-occupancy with the Rel-family protein Dorsal. Dorsal is required for CBP occupancy in the embryo, but only at regions where few other factors are present. CBP peaks in mutant embryos lacking nuclear Dorsal are best correlated with TGF-ß/Dpp-signaling and Smad-protein binding. Differences in CBP occupancy in mutant embryos reflect gene expression changes genome-wide, but CBP also occupies some non-expressed genes. The presence of CBP at silent genes does not result in histone acetylation. We find that Polycomb-repressed H3K27me3 chromatin does not preclude CBP binding, but restricts histone acetylation at CBP-bound genomic sites. We conclude that CBP occupancy in Drosophila embryos preferentially overlaps factors controlling dorso-ventral patterning and that CBP binds silent genes without causing histone hyperacetylation.


Asunto(s)
Tipificación del Cuerpo , Proteínas de Drosophila , Drosophila melanogaster , Proteínas Nucleares , Fosfoproteínas , Proteína Smad4 , Factores de Transcripción , Factores de Transcripción p300-CBP , Animales , Sitios de Unión , Tipificación del Cuerpo/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Desarrollo Embrionario/genética , Histona Demetilasas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Unión Proteica , Transducción de Señal , Proteína Smad4/genética , Proteína Smad4/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA