Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Pharm ; 18(2): 743-750, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33044825

RESUMEN

Loperamide is a µ-opioid agonist with poor gastrointestinal absorption, mainly because of its modest aqueous solubility and being a P-glycoprotein (Pgp) efflux substrate. Nevertheless, studies associated with therapeutic effects strongly suggest that loperamide holds potential pharmacological advantages over traditional µ-opioid agonists commonly used for analgesia. Thus, in this Communication, we assessed in MDCK-hMDR1 cell lines the effects over loperamide uptake and efflux ratio, when loaded into Eudragit RS (ERS) nanocarriers coated with poloxamer 188 (P188). ERS was chosen for enhancing loperamide aqueous dispersibility and P188 as a potential negative Pgp modulator. In uptake assays, it was observed that Pgp limited the accumulation of loperamide into cells and that preincubation with P188, but not coincubation, led to increasing loperamide uptake at a similar extent of Pgp pharmacological inhibition. On the other hand, the efflux ratio displayed no alterations when Pgp was pharmacologically inhibited, whereas ERS/P188 nanocarriers effectively enhanced loperamide uptake and absorptive transepithelial transport. The latter suggests that loperamide transport across cells is significantly influenced by the presence of the unstirred water layer (UWL), which could hinder the visualization of Pgp-efflux effects during transport assays. Thus, results in this work highlight that formulating loperamide into this nanocarrier enhances its uptake and transport permeability.


Asunto(s)
Antidiarreicos/administración & dosificación , Portadores de Fármacos/química , Loperamida/administración & dosificación , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Resinas Acrílicas/química , Administración Oral , Animales , Antidiarreicos/farmacocinética , Disponibilidad Biológica , Perros , Humanos , Absorción Intestinal , Mucosa Intestinal/metabolismo , Loperamida/farmacocinética , Células de Riñón Canino Madin Darby , Metacrilatos/química , Nanopartículas/química , Permeabilidad , Poloxámero/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidad
2.
Eur J Pharm Sci ; 125: 215-222, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30312746

RESUMEN

Oral bioavailability of loperamide is restricted by its limited absorption in the gastrointestinal tract due to its poor aqueous solubility and its P-glycoprotein (Pgp) substrate characteristic. In addition, ammonium methacrylate copolymers have shown to have mucoadhesive properties, whereas poloxamer 188, has been suggested as a Pgp inhibitor. Thus, in this work, we evaluate conditions that affect physicochemical parameters of ammonium methacrylate/poloxamer 188-based nanocarriers loaded with loperamide hydrochloride. Nanocarriers were synthesized by nanoprecipitation, enhancing loperamide encapsulation efficiency by modifying the aqueous phase to basic pH. The isolation of the non-encapsulated drug fraction from the nanocarriers-incorporated fraction was conducted by centrifugation, ultrafiltration, vacuum filtration and diafiltration. The last method was effective in providing a deeper understanding of drug-nanocarrier loading and interactions by means of modeling the data obtained by it. Through diafiltration, it was determined an encapsulation efficiency of about 93%, from which a 38% ±6 was shown to be reversibly (thermodynamic interaction) and a 62% ±6 irreversibly (kinetic interaction) bound. Finally, release profiles were assessed through empirical and semi-empirical modeling, showing a biphasic release behavior (burst effect 11.34% and total release at 6 h = 33% ±1). Thus, encapsulation efficiency and release profile were shown to have a strong mathematical modeling-based correlation, providing the mechanistic approach presented in this article a solid support for future translational investigations.


Asunto(s)
Antidiarreicos/química , Portadores de Fármacos/química , Loperamida/química , Modelos Teóricos , Nanopartículas/química , Compuestos de Amonio/química , Liberación de Fármacos , Metacrilatos/química , Poloxámero/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...