Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38908025

RESUMEN

i-Motifs (iMs) are non-canonical, four-stranded secondary structures formed by stacking of hemi-protonated CH+·C base pairs in cytosine-rich DNA sequences, predominantly at pH < 7. The presence of iM structures in cells was a matter of debate until the recent development of iM-specific antibody, iMab, which was instrumental for several studies that suggested the existence of iMs in live cells and their putative biological roles. We assessed the interaction of iMab with cytosine-rich oligonucleotides by biolayer interferometry (BLI), pull-down assay and bulk-FRET experiments. Our results suggest that binding of iMab to DNA oligonucleotides is governed by the presence of runs of at least two consecutive cytosines and is generally increased in acidic conditions, irrespectively of the capacity of the sequence to adopt, or not, an iM structure. Moreover, the results of the bulk-FRET assay indicate that interaction with iMab results in unfolding of iM structures even in acidic conditions, similarly to what has been observed with hnRNP K, well-studied single-stranded DNA binding protein. Taken together, our results strongly suggest that iMab actually binds to blocks of 2-3 cytosines in single-stranded DNA, and call for more careful interpretation of results obtained with this antibody.

2.
Methods Enzymol ; 695: 233-254, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38521587

RESUMEN

i-Motifs are non-canonical secondary structures of DNA formed by mutual intercalation of hemi-protonated cytosine-cytosine base pairs, most typically in slightly acidic conditions (pH<7.0). These structures are well-studied in vitro and have recently been suggested to exist in cells. Despite nearly a decade of active research, the quest for small-molecule ligands that could selectively bind to and stabilize i-motifs continues, and no reference, bona fide i-motif ligand is currently available. This is, at least in part, due to the lack of robust methods to assess the interaction of ligands with i-motifs, since many techniques well-established for studies of other secondary structures (such as CD-, UV-, and FRET-melting) may generate artifacts when applied to i-motifs. Here, we describe an implementation of automated, potentiometric (pH) titrations as a robust isothermal method to assess the impact of ligands or cosolutes on thermodynamic stability of i-motifs. This approach is validated through the use of a cosolute previously known to stabilize i-motifs (PEG2000) and three small-molecule ligands that are able to stabilize, destabilize, or have no effect on the stability of i-motifs, respectively.


Asunto(s)
Citosina , ADN , Ligandos , Motivos de Nucleótidos , Emparejamiento Base , ADN/química , Citosina/química
3.
Molecules ; 28(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36677740

RESUMEN

During the last decade, the evidence for the biological relevance of i-motif DNA (i-DNA) has been accumulated. However, relatively few molecules were reported to interact with i-DNA, and a controversy concerning their binding mode, affinity, and selectivity persists in the literature. In this context, the cholestane derivative IMC-48 has been reported to modulate bcl-2 gene expression by stabilizing an i-motif structure in its promoter. In the present contribution, we report on a novel, more straightforward, synthesis of IMC-48 requiring fewer steps compared to the previous approach. Furthermore, the interaction of IMC-48 with four different i-motif DNA sequences was thoroughly investigated by bio-layer interferometry (BLI) and circular dichroism (CD) spectroscopy. Surprisingly, our results show that IMC-48 is a very weak ligand of i-DNA as no quantifiable interaction or significant stabilization of i-motif structures could be observed, stimulating a quest for an alternative mechanism of its biological activity.


Asunto(s)
Colestanos , ADN , Secuencia de Bases , ADN/genética , ADN/química , Piperidinas/química , Colestanos/química , Dicroismo Circular , Ligandos
4.
Chem Commun (Camb) ; 58(33): 5116-5119, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35380138

RESUMEN

Biolayer interferometry (BLI) and circular dichroism (CD) spectroscopy were used to investigate the interaction between previously reported i-motif DNA (i-DNA) ligands and folded or unfolded i-DNA in acidic (pH 5.5) and near-neutral (pH 6.5) conditions. We observed that although several ligands, in particular macrocyclic bis-acridine (BisA) and pyridostatin (PDS), showed good affinities for the telomeric i-motif forming sequence, none of the ligands displayed selective interactions with the i-DNA structure nor was able to promote its formation.


Asunto(s)
ADN , Interferometría , Dicroismo Circular , ADN/química , Interferometría/métodos , Ligandos , Telómero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...